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ABSTRACT

Analog Neural Network
VLSI Implementations. (December 1991)
Bernabé Linares-Barranco, B.S., University of Seville;
M.S., University of Seville;
Ph.D., University of Seville
Chair of Advisory Committee: Dr. E. Sinchez-Sinencio

The objective of this dissertation is to demonstrate the viability of using ana-
log circuit design techniques to build neural network systems in hardware. For this
we introduce a novel design approach called transconductance-mode (T-mode). It
uses transconductance amplifiers and multipliers for gain stages and capacitors to
perform integration operations. Using these elements, together with some extra non-
linear resistors, many sets of nonlinear differential equations can be implemented in
hardware. '

The hardware implementation of artificial neural networks can be formulated
as a problem of realizing a specific set of nonlinear differential equations. We will
show that the proposed T-mode circuit design technique can be used to emulate the
differential equations that describe most of the known neural network systems. We
will use this technique to build a variety of programmable neural network systems
and to implement a learning neural network associative memory with on chip analog

dynamic memory.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

“In 1987 the American Institute of Electrical and Electronic Engineers (IEEE) called
the first conference on neural networks. It took place in San Diego, California, where
200 authors presented their papers to 2000 delegates. 1t was described as the dawn of
a new era. The scientists were talking of a kind of computing that is inspired by the
cellular networks of living brains. The following year we saw even bigger events: more
papers and more delegates. So, as far as most computer scientists were concerned,
something new was going on” [1].

What is happening? New systems are being proposed, built and studied that
are based on a type of computing different from the conventional one proposed by
Von Neumann [2] and that resembles living brains. The classical approach consists
of executing a step by step algorithm developed by one or more persons who tried to
represent their way of solving a certain problem into a computational procedure. In
the new approach the system learns from its own experience, like humans do. When
a little child is taught that a certain object is called table, nobody gives him or her
a sequence of instructions that say something like If 1) it has a horizontal platform,
2) is elevated from the ground by one or more legs, and 8) you can put things on i,
then this is a “table”. The way the child is taught is by showing him or her a table.
The more tables one shows to the child the more general and abstract is the idea he
or she develops about the concept table.

The basic idea behind the area of study called connectionism, neural networks,
or parallel processing (all of these names are synonyms) is that of systems having a
structure that, at some level, reflects what is known of the structure of the brain.
Such systems are characterized by the fact that they can be taught through examples
(like humé.ns), instead of being programmed. _

However, in artificial as well as in natural neural network systems we can distin-

guish between two big categories,

o Inherently Nonlearning Neura! Networks. These networks do not change or
adapt to the flux of external signals coming from the surrounding environment.

These systems (or subsystems) are used to perform preprocessing of sensory

Journal model is IEEE 'I}ansac.tioné on Automatic Control.



signals in order to generate other signals more suitable for the next processing
stages. Examples are the layers of neurons found in the retinas and cochleas
of living beings that transform visual and auditory signals into nerve impulses
that go to the brain. They also can perform some elementary signal processing
tasks such as automatic gain control, noise suppression, contrast enhancement,

motion detection, ...%.

Neural networks that are inherently nonlearning are
characterized by the fact that the value of a weight does not depend on the

neurons it interconnects.

¢ Inherently Learning NeuraJ-Net\#orks. These networks do adapt to the flux of
external signals coming from the surrounding environment. They are responsi-
ble for the intelligent type tasks such as pattern recognition, associative memory,
pattern clustering and classification, optimization, ... . Neural networks that
are inherently learning are characterized by the fact that the value of 2 weight

does depend on the neurons it interconnects.

Note that when an inherently learning neural network algorithm is implemented
in hardware it can be made with fixed, programmable or adaptive weights.

In this Dissertation we are interested in the hardware implementations of in-
herently learning neural network systems. However, we will describe briefly in this
Chapter some of the work reported on inherently nonlearning neural systems. Most of
this work is done in hardware (instead of software) because it deals directly with the
transformation of real world signals. On the other hand, the so far reported work on
Inherently Learning Neural Networks has been done mostly in software. It is usually
studied by mathematicians or computer scientists who develop special software for
“conventional” computers. In this Chapter we will also present some of the neural
networks of this type. Later on, in further Chapters, we will introduce a modular
circuit design technique that will allow us to implement in hardware most of the
architectures reported on neural networks. This technique is able to implement in
hardware a set of nonlinear continuous time differential equations that characterizes
most of the reported- architectures. However, many of these architectures have been
reported as described by a set of discrete time difference equations. But according to

1In living beings these neural subsystems rmght be subject to some adaptation
during the early stages of life.
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Fig. 1. General Neural Network Concept

Grossberg [3] there is always a mapping® between the discrete time neural system
and the continuous time one. Therefore, our hardware circuit design technique can
also be used to realize the discrete time systems, provided they are previously mapped

into a continuous time system.

A. The General Neural Network .Concept.

The general concept of a neural network is illustrated in Fig. 1. It is formed by a
set of processing elements called neurons interconnected in & certain fashion, some of
them receiving the external inputs, and some of them generating the sysiem output
signals. Each neuron receives signals from other neurons and might receive also
some external signals. It processes all these inputs and generates an output that will
be sent to other neurons and/or to the output of the system. The interconnection
between two neurons, say neurons i and 7, is called synapse and is characterized by the
weight or strength w;; of this interconnection. The set of weights of the system {wi;}
characterizes its input-output behavior. This set of weights can be preprogrammed
into the system to make it perform a certain task . The set of weights can also be
made to change during the Jife of the neural system depending on the input signals it
receives and/or the output signals it generates. This occurs in neural networks with
_learning (or adaptive) that change their behavior according to the input signals they

receive from the surrounding environment.

®*Which is shown in equation (1.7)..



Fig. 2. General Interconnection Topology for One Net'xro.r'l h

Mathematically, and with reference to Fig. 2, we can consider for each neuron the
following. Assume z; is the output signal generated by neuron j. Neuron j is receiving
the outputs from neurons 1 to n, plus an external signal I;. The interconnections
between two neurons, say neurons { and 7, is characterized by the weight of the
synapse w;;. Each synapse generates a signal Fj; = Fji(x:,wj;) that will be one of
the inputs to neuron j. Neuron j receives all these signals and after processing them

generates its output signal,
I =G}(F;1’°;'F3is"'friﬂ’IFiQ) | I.’(l'l)

The function G;(-) performs some kind of nonlinear processing. Generally it is made
the same for all neurons and is defined as a function of the sum of all the inputs,

G,‘(Fjl,...F},‘,...F}n,F}q) = G(Fjl + ...Fj,‘ +...Fjn+ F,’q) . ___(1.2)
and each of these inputs takes the 'pa.ri.;icul'al: form of a product,
Foz;, wy =w,z,, i=1...n L
i) = o s
Fiq(I;,wjq) = wjl;

Once the neuron receives all the inputs, its dynamic is usually described in two ways:



¢ Discrete time: the next state of the neuron output is expressed by a discrete
time difference equation, '
z;(t + At) = vG(t) (1.4)

o Continuous time: the change of the neuron output is expressed by a continuous
time differential equation,

; = —az; + fG(L) . (1.5)
where for both discrete and cibntinuous time it 1s,
G(t) = w; J;(t) + Z wjzi(t) (1.6)

Although these two descriptions look very different they can be mapped one into the
other by considering [3] | '

zi(t + At) m zj(8) +3;(1)At = ¥G(1) = #;(t) = ~ox;() + BG(H)  (1.7)

where & = 1/At and 8 = v/At. Note that these two system descriptions, discrete
time and continuous time, although equivalent can yield to completely different (hard-
ware) implementations. A discrete time version is easily implementable in a software
program, or using digital circuit techniques (or analog discrete time such as switched
capacitors) , while a continuous time version is directly implementable in hardware
using continuos time analog circuit techniques as we will see in later Chapters of this
dissertation.

As was mentioned earlier the input output behavior of a neural system is defined
by the set of weights of the synaptic interconnections {w;;}. In a nonadaptive system
such weights remain fixed at all times and the system usually performﬁ nonintelligent
tasks such as automatic gain control, contrast enhancement, edge detection, noise
suppression, movement detection, ... . In an adaptive system the weights change in
time according to the external signals, so that one can say that the input output

_behavior changes according to the accumulated experience of the system.

There are neural networks in which one can distinguish between two phases:

e learning phase, during which the system is trained to perform a certain task,
and the weights are free to change according to the learning rules used.
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Fig. 3. Neural Networks Classification

s performing phase, after learning, the weights are maintained fixed and the sys-
tem behaves according to what it has learned during the learning phase.

There are also networks in which one cannot distinguish between these two phases,
because they keep happening at the same time, like in human beings.

For systems for which one can separate in time the learning and performance
phases, there are several actual (hardware) implementation possibilities (see Fig. 3):

e Adaptive: the learning capability is implemented physically in the network, so
that it is teachable 3.

¢ Programmable: there is no learning capability, but the weights can be pro-
grammed externally. In such systems the learning phase has been simulated
previously in order to obtain the set of weights needed for the application, or
there are some known rules that allow the computation of the weights as a
functiorn of the task to be performed. In a programmable system the user can
change the weights according to the task to be performed by the system.

¢ Fixed: the values of the weights have been hardwired, so that the system will

_ always perform the same task. Note that a system could be inherently adaptive
(is able to perform intelligent type of tasks such as word recognition) but its
hardware implementation has been made with fixed weights.

3Systems in which the learning and performing phases cannot be separated have
to be adaptive.



In the rest of this Chapter we will provide a presentation of selected neural net-
work architectures of the nonadaptive and of the adaptive type. In further Chapters
we will show how to implement in hardware some of the adaptive architectures with
continuos time analog circuit design techniques, The hardware implementation of the
nonadaptive systems comes together with its description and will be presented in this
Chapter. -

B. Inherently Nonlearning Neural Networks

In this Section we will give a flavor of what we are calling Inherently Nonlearning
Neural Systems. The examples we are going to provide are related to the early

processing stages of visual and auditory data sensory of artificial neural systems.

1. Silicon Retina

This Silicon Retina [4] is a VLSI photosensitive chip that contains a grid of electronic
components that performs the following functions:

o At each pixel of the grid there is a photoreceptor device that generates a voltage
signal proportional to the logarithm of the light intensity shining on that pixel.

o The way the neighboring pixels are interconnected allows the generation, at
each pixel, of a signal that is the spatial and temporal average of the amount
of light received within a certain neighborhood during the previous moments.

o The output signal at each pixel is the difference between the output of the pixel
photoreceptor and the spatial and temporal average signal. The consequence
is that the retina’s output has an implicit Automatic Gain Control that allows
to adapt the operation to the average amount of light, so that little variations
with respect to a common background will be enhanced.

¢ A multiplexing circuit is added all over the chip thai allows the sequential
extraction of the output signals of each pixel.

As shown in Fig. 4 each pixel of the retina is one point in a hexagonal resistive
grid. Each pixel consists of a photoreceptor, a double output transconductance am-
plifier and a capacitor, plus the resistive interconnections to the neighboring pixels.
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The photoreceptor circuit is shown in Fig. 5. It is formed by two diode connected
p-channel MOS transistors and a vertical bipolar transistor. The bipolar transistor is
a photosensitive device that generates a collector current I, proportional to the light
intensity T shining on it,

Il.xZ (1.8)

This is a very small current, so that the two p-channel MOS transistors are going to
be biased in weak inversion. An MOS transistor biased in the weak inversion region is
characterized by the following equations relating terminal voltages and drain-source

currents,

n-chanpel: Ipg = j',,,,e’zﬂl%;"ﬁ (e‘ﬁ - e'%)
p-channel: JIsp = I,,e'!f&’}"a (e“f?{’li - e";?)

where ¢ is the absolute value of the electron charge, K is the Boltzmann constant, T

(1.9)

the absolute temperature, and I, L,,, k, and &, are device parameters [5].
By calling Vr = KT/q and Vps = Vp — Vs, we can rewrite these equations as

C L ¥ V,
n — channel: Ips= 1,at. (1 — e"af) s Ty, = I“e%;':ae"# (119)
¥ : T Vv, EnVey Vi 1.10
. p_ chaﬂnel H st = .I_Sa.t,., (1 -— e-&l‘a) s I“pr f— ope_‘%}agv;

RIS



Fig. 5. Circuit Schematic of Photoreceptor at Each Pixel

Assuming that Vps >» Vr for the n-channel device, and that —Vps € Vr for the
p-channel device, the preceding equations can be simplified into '

n — channel: Ips = L.,

(1.11)
p — channel: Isp = L,
Using now this simplified expression for the p-channel MOS of Fig. 5,
V; ¥ .
Isp = Iml, = ope_%;‘a Ctg- ' (1.12)
will result in ot 'V -
I.= Iwe"ﬁze—%‘n = ,pe--%#egg" ' (1.13)
and therefore v - b1, I
DD c
_ Voo _ L M
U B VT W In I, (1.14)

‘which proﬁdes a logarithmic relationship between I. (this is, the light intensity I)
and the output voltage U; of the photoreceptor. The experimental U; versus I curve
has a shape as shown in Fig. 6.

The implementation of the double output transconductance amplifier is as shown

in Fig. 7. In order to implement the resistive interconnections between pixels a circuit
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Fig. 8. {a) Circuit for Resistive Interconnections Implementation; (b) Detail of Bias

Circuit

like the one shown in Fig. 8 is used. The current through transistor M in Fig. 8(b}
is I,/2, which is controlled by Vjias. If Vs for My is large enough, we know that

A Vi =
L (1.15)

g T iem®

therefore, if the two bias circuits in Fig. 8(a) have the same value for Viiss, we can
define,

knVg -V, o
e B me = %TI?_ (1.16)
" Then, for the two transistors in Fig. 8(a),
_ : : ffun
kn Vyn =¥y -V -V _
[=Tpe ¥ (1 _ S ) =1, e+’ (1 —e ) Caan
’ C ’ et
Whel'e, Y ’an v " aaV Wi sy
¥, B- =¥ .
L, = mev;: = fon€ T ’ = fome b (1.18)
After some manipulations,
B R R
= =g = tanh = £1.19
The value of the conductance between the nodes of voltage V4 and V; is, |
R = = Loeta (1.20)

iV = Vadlyoy,  2Vr
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The most tedious part of the Silicon Retina is the circuit that periodically scans
the pixels output and transfers them to the output of the chip. The corresponding
circuitry is not goiné. to be described here [4], because it is not part of the “neural”
section of the chip. '

2. Retina for Color_Consta.ncy'

People that have used their photographic or video cameras under very dim light
conditions might have noticed that the resulting colors tend to become yellow. This
is because the photosensitive film'{for photography) or scanning screen (for video)
produce a response that depends on the incident light wavelength.

The retina that will be briefly described here [6] compensates for this effect, so
that the output signal is closer to the real color of the object, independently of the
source of light that was used for the recording. '

As shown in Fig. 9, the three colors output signals of a video camera are fed, each
one of them, to a Silicon Retina similar to the one described previously. Therefore,
for each of the three basic colors (Red, Green and Blue) an automatic gain control is
performed. The result is that, for example, if an image was recorded with mainly red
light, the output of the “red” retina will eliminate most of the red background color
common to the whole image, and enhance the local color differences and contrasts.

In this case, the input of the retina will not be provided by photoreceptors
included in each pixel, but by an additional scanning circuitry that will direct the
output of the video camera to one pixel at a time.

This technique, however, needs to be refined. The reason is that very uniform
areas (with little variation from one pixel to another) will produce a zero output.
This is because the output at each pixel is given by something iike

output = center — surround

The solution is to weight the term “surround” by a factor that could be called “edgi-
ness’, _ .
' output = center — edginess » surround
For very smooth areas it should be “edginess = 0", while for very detailed regions
with many signal variations it should be “edginess = 1”.

The physical value for the magnitude “edginess” is obtained.from the spatiﬂ
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derivatives between pixels. These spatial derivatives are smoothed on a second resis-
tive grid, and the output of this grid is a measure of “edginess”. This is schematically
shown in Fig. 10. For each one of the three colors there are two resistive grids (top
and bottom retinas). The top one is the one discussed so far. The bottom one is
physically identical but its input is formed by the sum of the absolute values of the
differences between neighboring background values. This is a representation of the
spatial derivative (of the background value) at each pixel. The bottom grid smoothes
this spatial derivative and its output is a measure of the “edginess” quantity, that
will be used to modulate the background value of the top resistive grid.

3. Retina for Movement Detection

With reference to Fig. 11 {7], suppose we have a monochrome image that has a
luminosity defined by
I(z,y,1) (1.21)

If this image contains some objects that are moving, the output of this retina should
be formed by the velocity vector field (u,v) for all the points of the moving objects
in the image. This is schematically shown in Fig. 11. The velocity vector field is

" obtained by solving the following set of equations,

Pu+ LLy—AVu+ L.L;i=0

_ (1.22)
LIp+ Do - AV + LI =0
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Fig. 11. Schematic Representation of the Operation of the Movement Detecting Retina
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where X is a positive “smoothness” factor for the resulting velocity vector field.
The discrete approximation of the previous set of partial derivative equations is

N

I3 ui + I,,‘.,.I,,ﬁé_'i;,-j "/‘(“s-ﬂa +—_—“=‘-_1:.:' + i + tiger — duig) + Iy by, =

o __ (1.23)
I 1y iy + Igijv;j"— A(vigrg +Vim15 + Vigar + Viger — 4vi5) + L Ly, =0
The circuit shown in Fig. 12, when it reaches its steady state, solves the previous set

of equations, where the following assignments have been made,

= —I;Iz‘:j

AR 5§ S
E 3 (1.24)
. 'g-g,b’.. —b Iz.'j'(I-if'ij.'l.'..I"‘f-)

g — EE}(I?iJ+I€‘j)

Tc.‘,' — .;;Iﬂijlﬂ'ij

The conductances T can be implemented using the same circuit that was shown
in Fig. 8. In order to implement the current sources #}; the circuit shown in Fig. 13
can be used. The transconductance amplifier with double output receives the input
signal I;; and at the output resistor develops a voltage I,; that is proportional to

s
I, o¢ ———gl;; 1.25
If the time constant of the signal variation is much larger than C/g we can approxi-

mate
L, = sCLi; : (1.26)

which is the time derivative of the input signal to each pixel. The spatial derivative
is approximated by
Ix‘., & L1 — di-1,j (127)

These two values are used as the inputs to a differential inputs transconductance

multiplier that will generate an output current proportional to

it o —Ii, 1, | (1.28)
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Fig. 12. Resistive Grids Network That Solves the Difference Equations of the Motion
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Fig. 13. Circuit Implementation of i}; Current Sources
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Fig. 14. Circuit Implementation of the Grounded Resistor gj;

if; will be generated in a similar way.
The grounded conductances,

% o I (L., + I,
. glj x u( J+ ‘Uu) (1‘29)

93’ x Im;'(I'-‘-'.i + Iv-':')

can have positive or negative values. Therefore, a transconductance multiplier with
simulated resistance connection can be used to implement a resistance able to change
from positive to negative values. Such a circuit is shown in Fig. 14 for the realization
of g. g¥; can be realized in a similar manner.

The floating conductances T, can also have positive or negative values. Their

iy
implementation is shown in Fig. 15.

4. Electronic Cochlea

The cochlea (natural or artificial} is a device that extracts from an auditory input
signal a set of output signals. Each one of the output signals is a certain representation
of the frequency content of the input.

In the electronic cochlea [8] this is done, as shown in Fig. 16, by cascading
several second order filter stages (over 200).

For the last output O, the transfer function is that of a very high order filter.
The poles are all of the preceding second order stages. Ideally the location of all the
poles should be like shown in Fig. 17(a). However, in the actual IC implementation
the poles are distributed as shown in Fig.. 17(b). This does not degrade severely the

overall performance.
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Fig. 15. Circuit Implementation of the Floating Resistor T
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Fig. 16. Arrangement of Second Otder Filters to Simulate the Function of 2 Cochlea
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Fig. 17. (a) Distribution of Poles for an Ideal Cochlea, and (k) for a Practical Imple-

mentation

An additional feature of any natural cochlea is that it provides also an Automatic
Gain Control (AGC). Therefore, if the background sound energy is high the outputs of
the cochlea will be attenuated. However, this attenuation is performed with frequency
dependent characteristics. If, as shown in Fig. 18, the outputs of the cochlea (which
are currents) are fed into a resistive-capacitive line, the sequence of voltages that
develop along this line is a sntoothed representation of the average “spectrum” of
the input signal. If for any of these voltages, its value is above a certain limit the
Q factor of the 120 preceding filters [4] will be attenuated, so that the frequency
content around this frequency will be decreased.

5. Binaural Hearing Chip
The purpose of this circuit [9] is to generate a bidimensional map of the correlations
between the two auditory signals of a stereo system. The result is what is called
the “stereausis model” of biological auditory processing, and is a representation that
encodes both binaural and spectral information in a unified framework. According
to Fig. 19, for each one of the two channels {left and right) a cochlea is first used to
. extract the frequency content of each signal. The outputs of the cochleas, after passing
through a sensory transduction circuit that performs a temporal differentiation, a
nonlinear conformation and a half wave rectification, are fed into a correlation matrix
network. The output of each sensory transductionlcircuit is fully differential. Each
element of the correlation matrix compares two by two the differential outputs of the
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If average=0 — AQ=0 —Qi-1=...=Qi-120=1.0
If average>0 — AQ<0 —Qi-1y ...Qi-1204

Fig. 18. Basic Circuit for the Implementation of an AGC in the Electronic Cochlea

two input channels. The results of these comparisons are summed two by two and
the highest one is selected by a winner-take-all (WTA) circuit.

6. Cellular Neural Networks

Another example of nonadaptive neural networks for signal preprocessing are the so
called cellular neural networks [10]. They can be used for image processing applica-
tions such as feature extraction, noise removal, edge detection, ... [11].

For the case of image processing the neurons are arranged in a two dimensional
array. For each neuron a neighborhood C, is defined, where all neurons that are at
a distance r or less are included (r = 1,2,...). Each neuron i has an external input
e; which is the intensity of a pixel of the image to be processed. The activation of a
neuron is defined by z; and its output by y;, which is the pixel intensity of the output
image. The dynamics of a cellular neural network are described by

.'ﬁ_,‘ = —az; + Zwﬁ“;’i.-—*-— 21"3 +1
. cr Ce

| __ (1.30)
vi = flz)

where w;; is the weight of the interconnection between neurons ¢ and j, #;; is the
weight of the interconnection between the external input for neuron §, e;, and neuron

¢, and a and I are positive constants. The function f(-) is a sigmoidal type of function
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{continuous or piece-wise linear).

C. Inherently Learning Neural Networks

Inherently Learning Neural Networks can be characterized as follows. With reference
to Fig. 1 they can be considered as a collection of processing elements, called nex-
rons, interconnected between them in a certain fashion with interconnection elements
called synapses. Each neuron receives the outputs of other neurons. Some neurons
also receive additional external signals from the surrounding environment. Each neu-
ron processes the input signals it receives and generates an output signal. This output
signal is transmitted to other neurons. The output signals of some of the neurons
constitute the global output signal of the whole neural network. The input-output
behavior of the system is defined by the set of interconnections strengths between
neurons {or between neurons and the external inputs), also called weights of the in-
terconnections. This description, so far, also fits the inherently nonlearning neural
networks described in the previous section. The basic difference between those and the
inherently learning neural networks described in this section resides in how the inter-
connections between neurons behave. In the inherently nonlearning neural networks
the weights of the interconnections between processing elements was either fixed dur-
ing all the time (like in the first two Retinas), or was modulated by the external input
signals to the neurons or processing elements (like in the motion detecting retina).
In an inherently learning neural network the weights of the interconnections change
in time depending on the external inputs to the neurons and also depending on the
actual outputs of the neurons. This allows to change or adapt the set of weights of the
network according not only to the signals received from the surrounding environment,
but also according to how the system is responding to the surrounding environment.
This is the key feature of a system with learning capabilities. Consider for example
the case of a person that is learning how to drive. The learning or training process
does not only consist of the instructor explaining all things that need to be done,
but also of the pra.ctice'. During the practice stage is when the learning person finds
out how he or she is performing and generates feedback to change the performance
in order to adapt it closer to the correct operation.

Therefore, in systems able to learn the weights are changed according not only to
the external signals but also to the internal neuron output signals, so that the system
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is monitoring somehow the performance learned so far.

Now we can distinguish between nonlearning (nonadaptive) and learning (adap-
tive) systems. However, there is a third category that lies in between these two, the
programmable neural systems. In a general adaptive neural network, when the user
wants to teach it to perform a desired task, he or she does, in general, not know what
are the collection of weights needed to perform that task. Therefore, he or she has to
make the system go through the training process during which the system will adapt
its weights until it learns to do whatever it is being taught to. Obviously, if the user
had a way to know the final collection of weights, he or she would skip the tedious and
painful training process and just give the network the necessary collection of weights.
Well, there are some neural network architectures that for certain applications this
is precisely what happens. There are available mathematical formulas that aliow the
computation of a specific collection of weights that will make the system perform the
desired task properly. In these cases we do not need to build an adaptive system, but
only a programmable one. Then, before the operation of the system, we just need to
load the set of weights into it and the system is ready to perform.

Sometimes there are no mathematical formulas available for computing the weights.
In these cases it is also possible to simulate previously the training process on a digital

computer and obtain the necessary set of weights.

| On the other hand, sometimes it is better to build the complete adaptive sys-
tem even if it is viable to simulate previously the training process or if there are
mathematical formulas available for the weights. This is specially true for hardware
implementations. The reason is that an actual implementation of a neural network
possesses many nonidealities that were not considered during the deduction of the
mathematical formulas, or were not taken into account during the simulation of the
training process. In these cases, when the actual implementation of the neural net-
work is being trained, the final set of weights that will be obtained compensates for
the nonidealities present in the network (such as delays, saturation characteristics,
* ponlinearities, or even non operation of some of the neurons or synapses).

Summarizing, we define three types of neural networks realizations:

¢ Nonadaptive Neural Networks: Non-learning systems. The weights of the
synapses are either fixed or change according to the external input signals.

o Programmable Neural Networks: Pseudo-learning systems. The weights are set
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by the user, either using available mathematical formulas or by external prior

simulation of the training process.

e Adaptive Neural Networks: Learning systems. The weights adapt during the
training process according to the external signals and according to the internal

responses or performance of the system.

For adaptive neural networks a further classification can be made according on

how the training process is performed.

o Neural Networks with Supervised Learning; during the training process the
neural network system is provided with both the desired inputs and outputs
that define the task the system is being trained to perform.

This is for example the case of a neural network that is trained to perform a
specific logic function like the one shown in Fig. 20.

o Neural Networks with Unsupervised Learning: in-some cases, when a neural
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Fig. 21. Kohonen’s Phonetic Self-Organizing Map Is a Clear Example of Unsupervised
Learning Neural Network Systems

network is going to be trained, the desired input-output relationship is not
known a priori. In these cases the user can only provide the external inputs to
the system, but not the expected outputs, because they are not known. This is
typical of neural networks that autoadapt to their environment, and once they
are trained their input-output behavior is a representation of the environment

used for the training.

An illustrative example is the self-organizing phonemes map of Kohonen ([12].
This neural network, as shown in Fig. 21, consists of a bidimensional collection of
neurons (interconnections are not shown). The neurons receive external inputs
that correspond to preprocessed auditory signals. After training, each neuron
will become active if the input signal to the whole system contains a specific
sound. In Fig. 21 each neuron contains a finnish phoneme that is the one that
will activate it. Before the training the user does not know what neuron is
going to respond to what sound. It is the system itself that will selforganize or

autocluster according to the flux of external signals received.

In the next part of this Chapter we are going to give some examples of pro-
grammable and adaptive neural network systems. The examples we are going to
present do not include hardware implementations aspects. We will only give the the-
oretical framework or algorithm for each one of them. Actually, the authors that
presented these neural network algorithms did not consider their physical implemen-

tations (of course there are always exceptions). They tested their ideas using software
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Fig. 22. Schematic Diagram of a Feedforward Short Term Memory

simulations. It is the task of other researchers to lock for an efficient hardware imple-
mentation of those theoretical algorithms. Indeed, this is the main objective of the
present dissertation as can be seen from its title.

~ But before starting with a brief description of some of the neural network algo-
rithms, let us first introduce a few relevant concepts for the neural network theory.

o Short Term Memory (STM): is the set of equations that describes the input-
output behavior of the system as a function of the weight values. For these
equations the weights are like parameters. These equations, implicitly, also
provide the structure of the interconnections between neurons. According to
this structure we can distinguish between two types of short term memories:

~ Feedforward: the network can be structured into separate layers of neurons
so that each neuron in a layer receives inputs only from the neurons in the
previous layers. This is shematically shown in Fig. 22.

~ Feedback: the network cannot be structured into separate feedforward
layers.

s Long Term Memory (LTM): is the set of equations that describe the evolution
of the weight values with time in an adaptive system, or the set of equations
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that provides the value of the weights in a programmable system. In adaptive
systems the time constants associated with the Long Term Memory is much
greater than the time constants associated with: the Short Term Memory. This
fact is what makes the learning process very slow in c_orhparison to the perfor-
mance process. This is also true for human beings. All of us know that learning

is a slow and painful process.

In what follows of this Chapter we will present a few of the neural network learn-

ing algorithms that have been reported in the Computer Science related literature.

1. Backpropagation

The backpropagation algorithm {13], as shown in Fig. 23,"is a multilayer neural
network with a feedforward SEM. In general it consists of N -layers of neurons, each
one of them containing P, number of neurons, where n is the layer number. For
a certain neuron r in a layer n, let us call its output O}. All the neurons in one
layer {07,03%,.. OP } receive the outputs of all the neurons in the precedmg layer
{071,057%,...0%1 }. The weight of the synapse connecting neuron 0}~! in layer
n — 1 to neuron O,".‘ in layer n is w?,. The input to the network is given by the input
signals to the P, neurons of the first layer. For notation purposes let us call these
inputs {0%,03,...0%}. The output of the network is given by the output signals
of the neurons of the last layer {Of,0F,...0f,}. The dynamics of this system is
described by its STM and LTM equations.

a. STM Equations

For each neuron in each layer OF its output is computed as

P

FOX w0t —87) (131)

s=1
where the function f(.) is a sigmoidal type function that, as shown in Fig. 24 has to
be monotonically increasing, has to saturate to a minimum value fr, for low inputs
and to a maximum value f.. for high inputs, and has to be sufficiently smooth and
differentiable. Examples for this function are:
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_f(:n) = ar_-ctan(:r)

| f(m) =’ﬁai~ctan_h_(:c) (132)
o flzy= e

The parameter 87 in equation ( 1.31) is called the “threshold” of neuron O}. During
the learning stage the weights w?, will change. Many times the threshold values 67

are also made to change during the learning process.

b. LTM Equations

The backpropagation algorithm is a feedforward algorithm that needs supervised
learning. This means that for each training step the user has to provide the appro-
priate input-output pairs.

Suppose that for the input {0$,03,...0%,} the desired output is {t1,t2,...¢py}.
However, for the set of weights and thresholds the system possesses at this moment,
it will generate according to the STM equations the output {O,0F,...OF,}. This
means that the weights (and thresholds) of the system need to be changed until the
actual output is exactly the desired one. Those changes are made based on an error

term defined as
Py

=230 - Oy (1.33)

i=1
How do we need to change the weights w, (or thresholds 6}) so that E will be made

less? The answer is using a steepest descent method:

Aw}, = -9 a}i

_ EET’ (1.34)
AP = — 2._.

i = "oy

where the parameter 7 can be viewed as-a time constant for the LTM equations, and
is responsible to make the learning sufficiently slow so that it is stable. The partial
derivatives in equations( 1.34) take the form,

aE —_ nn—1
owr, —&0;

3E | (1.35)

oer o
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where, o
Py_y

& = (t, ~ OP) (Y. whON-1 —6Y), for layer N
- (L36)
ot =36 we) (Y w07 — 87), for layern # N
a=1

These learning-or LTM equations constitute what is being calied the “delta rule”.
These deltas are a measure of the error between the actual and desired output values,
and they determine the changes of the weights (and thresholds).

2. Neocognitron

The Neocognitron [14] is one of the most powerful and also largest neural networks
for character recognition. It is able to recognize alphabetic and numeric characters
obtained from a handwritten input. This means that it is able to identify heavily
distorted and translated input characters. It was first reported by Fukushima in [15)
and has been evolving since then [16, 14, 17, 18].

The basic architecture (for the case of handwritten numerals recognition) is
shown in Fig. 25. The first layer consists of 19 x 19 input sensor cells. The fol-
lowing layers go by pairs: one S-layer and one C-layer. Each one of these layers has
their cells or neurons separated into planes. For example, layer Us; has 12 planes, and
each one of it has 19 x 19 cells or neurons. Each neuron in an S-layer receives inputs
from neurons of all planes of the previous C-layer (or the sensor layer). The weights
of the synapses that connect to neuron i in a plane of an S-layer are the same for
all neurons i in the other planes of the same S-layer. The C-cells are inserted in the
network to allow for positional errors in the features of the inputs. Connections from
S-cells to C-cells are fixed and variable. Each C-cell receives signals from a group
of S-cells which extract the same feature, but from slightly different positions. The
C-cell is activated if at least one of these S-cells is active. Even if the input feature is
shifted in position and another S-cell is activated, the same C-cell keeps responding.
Hence, the C-cell’s response is less sensitive to shifts in position of the input pattern.

a. STM Equations

The weights subject to change are those from a C-layer to the next S-layer. These
interconnections are schematically shown in Fig. 26. Each neuron in an S-layer re-
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Fig. 25. Architecture of the Neocognitron for Handwritten Numerals Recognition
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Fig. 26. Illustration of Interconnections from Neurons in a C-Layer to the Neurons in
the Next S-Layer '
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Fig. 27. Schemati'.:.:mlll_lﬁétration of Shdrt Term Memo'r.y'df Neocognitron

ceives excitatory connections from some neurons of the preéeding C-layer, plus one

inhibitory connection from an intermediate V-cell which receives inputs from the

previous C-layer. ' _
If e is the excitatory input to a neuron in the S-layer and h is its inhibitory input,

it will be L

c. 'i;a_(v)u(v) . (1.37)
h=b v

where u(v) are outputs of the neurons of the previous C-layer, v is the output of
the intermediate V-cell, a(v) are the weights of the excitatory synapses and b is the
weight of the inhibitory synapse. The neuron of the S-layer generates its output by

following the expression

' 1+e. .\ -
W= cp( ey 1) C (1.38)
where, S S : -
2,ifz20 a
o(z) ={ L ' _ . ' (1.39)
0,ifx<0 :

This process is schematic;llg shﬁlivn_i-ig___-____;‘Fig'. 27.

b. LTM Egquations

The only weights subject to change are the excitatory connections from C-layers':l -1
to S-layers !, and the inhibitory conneéctions between one V-cell and one S-cell in the

S-layers {.
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With reference to Fig. 28, which represents the interconnections between neurons

in the C-layer [ — 1 to one neuron in the S-layer [, let us define the following notation:

x = indez for plane number in the Ug,_, layer.
k = indez for plane number in the Us, layer.
n = vector positioning a neuron inside a plane of the Ug,_, or Us, layer.
us,{n, k) = output of neuron n in plane k of layer Us,.
uc,_,(n + v, &) = output of neuron n+v in plane & of layer Ug, _, .
uy,(n) = output of V-neuron n in layer Us,.
ai(v, k, k) = weight of excitatory interconnection belween neuron n in plane k of
layer Us, and neuron n+v in plane & in layer Ug,_,. Note that it is independent of
the position n.
bi(k) = weight of inhibitory interconnection between neuron m in plane k of layer
Us, and V-neuron n of layer Us,.
q1 = positive constant determining the speed of reinforcement.
‘ei(v) = weight of fized ezcitatory connection from neuron n+v in plene & of layer
Uc,_, to V-neuron n in layer Us,.
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According to this notation the LTM equations are given by

»\QGI(‘G K i‘) = qici(v)uc,_, (A + v, x)

atsynb= (1.40)
- L Abi(k) = quy(h)

where fi and f; specify _ﬁhe most active neuron (winner) of all the neurons in layer
Ucis' ™ N . ' _ :
The training is done layer by layer. This means, first only the interconnections
between the first and second layers are allowed to cha.ﬁge until they reach their fi-
nal values. ’_I‘heﬁ the interconnections between the second and third layers are the
only ones allowed to change. And so on. As an illustration of the efficiency of the
neocognitron, in Fig. 29 we show handwritten input numbers that the neocognitron
algorithm was able to recognize.

A recent modification of this algorithm oriented to hardware implementations
has been proposed [19].

3. Hopfield Network

The simplicity and beauty of Hopﬁeld’s Neural Network [20, 21, 22, 23] was what
triggered the fever and enthusiasm of neural network research, at least in the Electrical
Engineering Community. His network is a feedback type fully interconnected set of
neurons capable of working as an associative memory and as a general optimization
tool. -

As shown in Fig. 30 it can be viewed as a one layer neural network in which each
neuron connects to all the other neurons. There is no self connection (a neuron does

not receive its own output as an input).

a. STM Equations
For each neuron 1 its output is’Obtdin’_éd’ by o&rﬂputing the following equations
"o For continuous-time dynamics:.
N e

& = —ogxi + L+ Zwi:‘f(a?j)s i=1,...N (1'41)

i=1 -
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where f(.) can be a step function, a sigmoidal function or a piece-wise linear function.
The only conditions for f(.) are: o

e it has to be an increasing function

s it has to saturate to a maximum value f,,, for high inputs, and to a minimum

value fin for low inpufs.

b. LTM Equations

Hopfield’s network is a very typical example of programmable neural network. The-
oretically it could be made adaptive, but the STM equations may result unstable
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for certain combination of weights . We will distinguish two kinds of LTM equa-
tions depending on whether the network is used as an associative memory or as an

optimization system.

e Associative Memory: suppose we have L__bina.ry patterns that we want to store

in the network:
{S1,8,,...8k} 1=1,...L (1.43)

where 5! € {fmin) fmas}. Then the weights are computed by the following
mathematical equations:

i -

N T g
wi; = ESf S_ﬁ', i#)

i=t _

| (1.44)
wy=0, i%j

» Optimization Network: in the case of symmetrical weights the Hopfield Network
converges 1o a local minimum of the following Energy function:

1 N N N
EF=—- E Ew,—_,-z.-:nj e ZS,'I,' (1.45)
-2 =1 j=1 =1

Therefore, if we have an optimization problem that can be expressed in terms

of a second order polynomial
N N . .., N
¢ = Z: z A,’_f.’t,‘.t,‘ + 2 B,’lt.' (1.46)

=1 g=21 i=1

the weights w;; and inputs I; are obtained by identifying the equivalent terms
in the two previous equations. In Chapter III we will generalize this approach

to the general constrained second order optimization problem.

4. Bidirectional Associative Memory (BAM)

The BAM- [25, 26, 27], as shown in Fig. 31, can be visualized as a two layer network
in which every neuron in one layer receives inputs only from all the neurons in the

4If the weights are made symmetrical w;; = wj; then the stability is assured.
%nc]identally, this is how Salam managed to implement a learning Hopfield network
24].
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other layer ®. The weight w;; of the synapse from neuron b; in the top layer to neuron
a; in the bottom layer has to be the same as the weight of the synapse that goes
from neuron ga; in the bottom layer to neuron b; in the top layer. The top layer has
M neurons and the bottom layer has N neurons. The matrix of weights {w;;} that
defines all the interconnections in the network is an M x N matrix,

a. STM Equations

“» Discrete time Dynamics: the response of the system is defined by the equations

alt+h)= Zw.,f(b(t i=1,...N
J=1 T ' - (147)

by(t + h) zw.,f(a.(:)) j=1,...M

i=1

where f(-) is a nonlinear function similar to that of the Hopfield network. The
initial conditions are given by the external inputs

ai(o) Ig, ‘ — 1 N

(1.48)
b0)=J;, j=1,...M
When the system reaches the stea.dy'.'st:at_e
nait+h)=ait), 1=1 o.N
S ¢ - )',_ ) a0 (149)
bj(t-l- h) =-bj(t),- i=1...M
the output of the system is given by the output of the neurons
{“:}.=1 ’ {b },-1 (1.50)

It can be consxdei'ed as 4 spec:al case of Hopfield’s Network (see Chapter IV,
Section A.1), o
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Fig. 31. Basic Architecture of BAM Algorithm

o Continuous time Dynamics: the evolution of the system is described by,

a; = —ai+ L+ ) wi; £(5;)

. = NN ¢ £3Y)
b = =b; + J; + ) wi; flai) -
: i=l

b. LTM Equations

¢ Programmable BAM: suppose the user wants the BAM to recognize L pair of

patterns _ L | ) |
{(allf' . aj\.’)f(hi!" . b.‘u)} gt.. =1,... L L (1__52)

then the weights ' S Lo -
wy =3 f(e)f (%) (1.53)

I=1 "

will make the network able to perform this task.

o Adaptive BAM: the dynamics of the weights changes are given by

i = —wy; + nf(a)f(b;) - (1.54)
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‘This kind of learning rule, where the change in weight of a synapse is propor-
tional to the product of the two neurons output the synapse interconnects, is
called “Hebbian Learning”. Note that the programming rules used for both the
programmable Hopfield and the programmable BAM is often called “Hebbian
Programming”.

5. Adaptive Resonance Theory (ART)

The scientific community will never be thankful enough to the arsenal of contributions
provided by Grossberg and his group. Some examples are {28, 29, 30, 31, 32, 33, 34,
35]. One of the milestones in his research was the Adaptive Resonance Theory, that
so far has materialized into three associative memories (ART1, ART2 and ART3)
[28, 29, 30]. Here we will describe very briefly the first one, namely ART1 [28].

As shown in Fig. 32 it consists of two layers of neurons F1 and F2. Neurons in
F] receive the external inputs. there are excitatory connections from neurons in F1
to neurons in F'2 and vice versa. Each neuron in F1 receives also an inhibitory input
from the global F2 layer. This inhibitory input is the same for all neurons in F1.
Neurons in F2 receive inhibitory inputs from the other neurons in #2. Not shown in
Fig. 32 are the gain control mechanisms to F1 and F'2 and the reset wave function to
layer F2 that make the ART1 associative memory have unique characteristics with
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respect to its competitors.

a. STM Equations
ART1 is described by a set of continuous time differential equations:
Fl: ex; = -2 + (l - /'l;‘.’.lf,').f‘-+ - (B[ + Clx‘-)J‘-"
Tt = L+ DY f(z5)wi
. 5

I = 5(z;)
]
F2: ei;=—z;+ () =Az;)Jf — (By+ Cox ;)5 (1.35)
Jf =g(z;)+T;

T; = DyY_h(zihwy;
Ji =E.¢(ik) |
=

where ¢ is a time constant parameter, A(-) and g(:) are sigmoidal type functions,
A;, B;,C; and D, are positive parameters, x; are the outputs of neurons in F1, and
z, and x; are the outputs of neurons in 2, Note that the index ¢ is used to enumerate
elements of F'1, and the index j to enumerate elements in F2. Therefore w;j; never
represents the same weight as w;;, even if £ = j. ¢ The function f(-) is defined as

1, if T=max{Ti}

fzs)= { (1.56)

0, otherwise

'b. LTM Equations

The learning rules are of the Hebbian type, and the mathematical equations are
different for the weights of the synapses that go from F'1 to F'2 than those that go

%w;; is the weight of the synapse that connects the output of neuron j in F2 to
the input of neuron ¢ in F'1, while w;; is that of the synapse that connects the output
of neuron i in F'1 to the input of neuron j in F2.
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from F2 to F1:

F1o F2: g = Kif(2;)l=Eqjwi; + h(z:)]

i _‘ (1.57)
F2 - Fl: by = Ko (2;)[~Ejiwji + k(’i)l

P A

6. Kohonen. Neiﬁworks

The neural networks developed by Kohonen [12] are ones of the most efficient and
powerful of all neural systems. They consist, as is shown in Fig. 33 of a bidimensional
layer of neurons (in general could be any dimension), each one of them connected
through synaptic connections to all the input signals. The neurons are interconnected
between them by synapses whose weight twy; is nonadaptive and depends only on the
distance between neurons in the way shown in Fig. 34. The weights y;; of the synapses
that interconnect the inputs to the neurons are adaptive. These are the only ones
that change during the training phase and encode what the network has learned.

The fact that the interconnections between neurons respond to the weight values
shown in Fig. 34, will make that, for a given input, and when the steady state is
reached, the active neurons will all be within a certain “bubble”. This is illustrated
in Fig. 35.
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a. STM Equations

If z; is the output of the i* neuron and I, is the 7** input, the time evolution of the
neuron output is described by the following continuous time differential equation

(i) + wam £ 3 ol (1.58)

J=1

where 4 is a time constant parameter.

b. LTM Equations

The learning equations of this algorithm are also of the Hebbian type. The changes

in p;; are given by

;’;,-,-.;..-— c;('I;-:r:,- - Fu)‘ for neurons within the bubble (1.59)
fi; = 0, for neurons outside the bubble

D. Conclusions

In this Chapter we have presented a selection of neural networks that have been
reported in the literature. We have divided them into two main categories: inher-
ently learning neural networks and inherently learning neural networks. The ones
without learning are usually used for sensory signals (audio or visual, for example)
preprocessing. When they are reported in the literature they usually come together
with their VLSI implementation. For the neural networks without learning, we have
briefly described some of the mathematical algorithms reported so far. No VLSI im-
plementation has been mentioned. This will be the subject of Chapters III, IV and
V. | |

In the following Chapter we will provide a simplified description of the behavior of
the biological neuron that will serve our purposes. Then we will deduce a2 mathemat-
ical mode! that will lead us to a VLSI implementation. The model will be simplified
gradually until obtaining the most simple neuron, which can be implemented by using
a simple inverter.
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CHAPTERII |

NEURON MODELS AND THEIR IMPLEMENTATIONS
The area of Artificial Neural Networks consists of building machines and algorithms
that are based somehow on the structure of natural brains. It has been shown during
the past years that such type of machines are able to do human kind of tasks {asso-
ciative memories, pattern recognition, feature extraction, ...) much more efficiently
than conventional algorithms running on conventional computers.

The fact that the area of knowledge called Artificial Neural Networks is based
on biological brains is not trivial to any outside observer. A biological brain is made
of nervous tissue, it contains living cells, it works thanks to an immense collection
of biochemical reactions between huges organic molecules, and it is powered by the
metabolism of the living being that owns that brain. On the other hand, an arti-
ficial neural network is most of the times a strange software algorithm on a digital
computer. Sometimes, when we talk about hardware implementations of artificial
neural networks, we can physically identify the neurons and synapses of the system,
but they are just a collection of transistors and wires built on a rigid silicon substrate
that might communicate to a digital computer, and that is powered by a constant
voltage source usually plugged to a socket on the wall. Where is then the relation
between these two neural systems, the natural and the artificial?

They both consist of a set of processing elements, called neurons, interconnected
by synapses. The relationship is therefore in the structure, not in the implementation.
1t is the structure of the artificial neural systems that gives them the ability to perform
human-kind tasks. And even more, what makes a neural system able to perform a
specific task is not the collection of little processors or neurons, but the collection of
weights of the synapses and how these change in time.

Hence, we can conclude that the most important part of a neural system (both
natural and artificial) are the synapses and how they change their weights. The
.irnporta,nce of the neurons is secondary. Actually, in artificial systems, they are made
as simple as possible, and their performance is not critical at all. Even more, if the
synapses work properiy, a large percentage of nonoperating neurons can be tolerated.
In artificial neural network hardware research most of the effort is put on how to
implement a sufficiently small synapse able to store its weight efficiently. Nobedy
cares about the implementation of the neurons. Almost anything is good enough to
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be a neuron as long as the synapses work well.

All this is true {although we have overdramatized the situation a little bit), but
even so we believe it is good to know the ‘connection’ between the natural biological
neuron and the artificial one. The way natural neurons work and interact will give
us a wider vision of the field and might help us in the future if we decide to change
the artificial implementation technique or technology.

In this Chapter we will first describe with some detail the operation of the living
neuron and its interaction with the others. Based on this, we will derive a mathe-
matical model (definitely not the most complete available today) that will serve our
purposes [36). Then we will give a hardware implementation of this model and will

simplify it gradually until obtaining a two transistor neuron (a simple digital inverter).

A. Physiology of the Biological Neuron

In this Section we are going to describe briefly the biological mechanisms {37, 38]
involved in the interaction between neurons and how, as a consequence of this inter-
action, a neuron generates an electrical impulse that is called the action potential
A neuron is a living cell immersed in an interstitial fluid. There exists a voltage
difference between the inside and the outside of the cell that is produced by an
unequal distribution of electrolytes inside and outside of the cell membrane. This
unequal distribution of ions is a consequence of the cell membrane having different
permeability factors for each one of the ions. For the time being, and as is illustrated
in Fig. 36, assume that inside the cell membrane there are K* ions and large organic
A~ ions, while outside there are mainly Ci~ and Na* ions. The cell membrane is
always impermeable to the A™ ions so that they always remain inside the cell. These
molecules are too large for passing through the cell membrane’s pores. During the
resting state the cell membrane is permeable only to K+ and CI~ jons. Therefore,
K* will tend to diffuse outwards, while Cl~ tends to diffuse inwards in order to
equal their concentration on both sides of the membrane. As a consequence of this
diffusion the electrical eqliilibrium of the state shown in Fig. 36 is altered, and an
electrical field will arise {negative inside with respect to the outside). This electrical
field opposes the diffusion of ions down their concentration gradient. An equilibrium
state will be established in which the force of the electrical field against the ions equals
the chemical force that makes the ions diffuse. At this equilibrium state a voltage
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difference of typically 60 — 80mV is present between the internal and external walls
of the cell membrane, called membrane resting potential.

In 1943 David Goldman of Bethesda derived an expression for the membrane
potential in terms of the concentration of ions on both sides of the membrane and
their relative membrane permeabilities. For the case of our living cell membrane the

electric potential V,, (inside with respect to outside) is given by,

Pic|K*)out + Pra[Nat)ou + Pot[Cl™)in

Px[K+*]in + Pra[Na¥in + Poi[ClJous (2.1)

Vi = 58mV log

where Py, Py, and Pg; are the relative membrane permeabilities for K+, Na* and
Cl- respectively, {K +.]wt, [Nat]ou and [Cl7)o are the concentrations of jons K*,
Na* and Ci~ outside the membrane, and [K*+)in, [Na*}in and [Cl7);,, are the con-
centrations inside.

During the resting state of the neuron the cell membrane is impermeable to jons
Na* (P, =90) and ¥, ® —75mV (typically between —60mV and —80mV'). During
the generation of the action potential Py, reaches its maximum value and V,, =
+50mV. There is also a flow of Na* inwards the cell that contributes to the increment
of membrane voltage V,,, followed by a flow of K+ outwards to reestablish the resting
potential. Naturally, there is also a mechanism that, after the action potential, is
going to pump Na* outside, and K* inside, so that the resting concentrations of
these ions are recovered. This is performed independently by the so-called Na* — K*
pumps. These are very complex organic molecules embedded in the membrane that
literally pump Na* out and K+ in against their concentration gradients, by means
of a sequence of chemical metabolic reactions that consume energy.

At this point we can give an equivalent circuit for the electrical properties of
the nerve membrane, as is shown in Fig. 37. The different permeability faciors are
represented by conductances Gn,, Gx and Get, and C., is the capacitance imparted
by the lipids of the membrane. Ex, En, and Eg; are called the Nernst Potentials for
K*, Na* and Ci~, respectively. They are defined by the expressions

Ex = 58mV log Y=
En. = 58mV log fges (2.2)
Egy = 58mV log (5=
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Fig. 37. Equivalent Electrical Circuit for Electrical Properties of the Nerve Membrane

According to the Goldman equation (2.1) when the neuron is resting, since Py, = 0,

it yields [+ ]
PK K out + PC'I' " lin
f = 1 .
Vo = 58mV log PelK ¥ + Por[Cl o (2.3)
Usually the effect of CI™ ions diffusion is negligible, so that
(K*ow _ o
Vi = 58mVlog e Ex = ~TmV (2.4)

and the membrane resting voltage is approximately equal to the K+ Nernst potential
(which is —75mV).

During the generation of the action potential Py, increases until it reaches a peak
and then returns to zero. At the peak, when Py, is maximum, Goldman’s equation
can be approximated by

[Nat]ow

= Ens = +50mV - (2.5)

which is approximately the peak voltage of the action potential.

The conductances Gy,, Gx and Gcy are proportional not only to the relative
membrane permeabilities, but also to the concentration of electrolyte at the side of
the cell membrane that is the source of the flow. So, for example, for Na* the source
of the flow is the outside of the cell membrane (the fiow is from outside to inside).
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Therefore,
' GN o PNG{NG+]wi

Gx & Px[K*}in (26)
Got x Por[C17)oue

Embedded in the cell membrane there are the so-called ionic channels. These are
physical channels (pores) that can be opened and closed by different stimuli, and when
open allow the flow of certain ions through the membrane. The opening and closing
of these channels is what changes the permeability of the membrane, and therefore,
the membrane potential. Many channels have been identified so far. However, we
are going to consider only a few of them that will allow us obtain an appropriate

mathematical model for the neuron dynamics.

1. The Nat Channels

We are going to consider only two different types of Na* channels: the ones opened
chemically by organic molecules called neurotransmitlers released by the end of a
synapse when it receives an electrical impulse, and the ones that are opened when
the membrane voltage reaches a certain threshold value (approximately —50mV) 1.
These two channels receive the name of Chemically Gated Channels and Voltage Gated

Channels, respectively.

a. Chemically Gated Channels

In Fig. 38 is depicted a neuron with two synaptic connections, one excitatory and one
inhibitory. The end. of the synapses do not touch the cell membrane of the neuron.
Thereis a spacixig between each synapse and the neuron’s membrane of approximately
20— 40nm, called synaptic cleft (see Fig. 39). Each synapse is at the end of an axon of
another neuron. When an electrical impulse reaches the synapse, vesicles containing
large organic molecules called neurotransmitiers are released. The neurotransmitters
that will open the Chemically Gated Nat Channels are excitatory neurotransmitters.
They are contained in spherical vesicles inside excitatory synapses. The Chemically
Gated Nat Channel is a large organic molecule (a protein) embedded in the neuron’s

1Recent studies [38] reveal that there are also some intermediate types of channels,
i.e., they can be opened by a the two mechanisms.
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Ab)

Fig. 39. Nlustration of Opening MechamSm of a Chemlca.lly Gated N &t Channel by
an Excitatory Neurotransmitter

membrane at the synaptic cleft between neuron and an excitatory synapse. When
excitatory neurotransmitters are released into the synaptic cleft, they will eventually
reach the Na*t channels and bind to them. When this happens the channels are
physically deformed so that they change their structural geometry and open a pore
in the membrane that allows the flow of Na* ions. The excitatory neurotransmitters
only bind temporarily to the channels. They will be hydrolyzed into another substance
which is inactive and will be absorbed by the synapse, so that the neurotransmitter
can be recycled for future use.

b. Voltage Gated Na* Channels

These are channels that are opened when the membrane voltage increases above
—50mV, approximately.- When an electrical impuise is delivered through an excita-
tory synapse, excitatory neurotransmitter is released, chemically gated Na* channels
open and Na* flows into the cell producing an increase in the membrane voltage. If
the electrical impulse was strong enough or if it was a sufficiently long train of pulses,
then more channels had been opened and the membrane voltage had reached the
—50mV threshold. I this happens the voltage gated channels will open and therefore
further increase the membrane voltage. This is like a chain reaction whose result
is a very high Na* permeability factor (high Gn,) which will produce the action
potential.

The way the voltage gated Na* channels work is as follows. It is another pro-
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tein. It consists of four equal rigid units of 300 amino acids that are joined by other
chains of flexible amino acids. These four units are arranged in a cylindrical fashion
inside the membrane. For a membrane voltage below —50mV the four units are very
close together and the channel is closed. But if the membrane voltage increases above
_50mV the four units will separate (no more than 5A) allowing flow of Na* ions.
This is schematically illustrated in Fig. 40. Some regions of the protein are charged
positively and others negatively. It is believed that the interactions between these
oppositely charged regions serve as sensors of changes in transmembrane voltage, pro-
ducing changes in the configuration of the channel protein, which opens the channel
slightly allowing flow of Na*. Such channels remain open only for a few milliseconds,
and their flow of ions can be represented by a square pulse of current (1 to 2 pA) of
the same amplitude for all active channels but different duration. Fig. 41(a) shows
the current through three different channels, while Fig. 41(b) depicts the shape of
the sum of 200 of them. Due to the chain reaction produced when the membrane
voltage reaches —50mV, all the voltage gated channels will open making Gy, very
high for a few milliseconds. The transient membrane voltage V,, produced under
these conditions is called the action potential (see Fig. 42). The amplitude and shape
of this action potential are characteristic of the neuron cell and do not depend on
the signals that triggered it. If the signal that triggered the action potential is strong
enough a train of action potentials might be generated (each one of them of constant
amplitude and shape). The number of action potentials and the separation between
them does depend on the strength of the triggering signal.

2. The Kt Channels

There are several types of K* channels, but the action of all of them is to stabilize
the membrane potential to the resting voltage. Their effect can be summarized as a
current opposite to the Na* one that is activated after some delay by an increase in
the membrane voltage as shown in Fig. 42. Since this current produces a decrease in
membrane potential, it will make, after the peak of N a* current, the voltage to reach
its resting value. Furthermore, if originally not enough N at channels were opened
fast enough, this K+ current will start to make the membrane potential to decrease
before the threshold voltage is reached and, therefore, abort the action potential.
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Fig. 40. Illustration of Structure of a Voltage Gated Na* Channel When Closed (a),
and When Open (b)
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-80mV

Fig. 43. Effect of Inhibitory Transmitter, Released by an Inhibitory Synapse, on the
Membrane Voltage

3. The ¢!~ Channels

The €1~ channels are chemically gated channels embedded in the neuron’s membrane
in the synaptic cleft of inhibitory synaptic connections. When an electrical impulse
reaches this synapse, inhibitory neurotransmitter is released into the synaptic cleft
and will attach to the Cl~ channels distorting them briefly and opening ionic gates
permitting CI™ ions to move by diffusion into the cell. The resuit is an ionic current
that tends to decrease the membrane voltage, as is shown in Fig. 43. The ionic
channels for inhibition are surprisingly nonspecific, depending purely on the pore size:
all anions smaller than a critical size in the hydrated state (0.29nm) pass through.

B. An Electricﬂ Circuit Model

So far we have described the physiology of the living neuron and given a partial
equivalent electrical circuit (see Fig. 37). Now we are going to complete the equivalent
circuit so that it will allow us to represent most of the dynamics involved. The circuit
is shown in Fig. 44. The different ionic channels are represented by the following

elements:

o I, represents the excitatory effect of the Nat current passing through the chem-
ically gated Na* channels. This current source depends on the signals arriving

from other neurons through excitatory synapses.
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Fig. 44. Electrical Circuit Model That Explains the Generation of the Action Potential
in a Neural Cell

¢ I; represents the inhibitory effect of the Ci~ current passing through the chem-
ically gated CI~ channels. This current source depends on the signals arriving

from other neurons through inhibitory synapses.

e Gn, represents the change in Nat permeability of the cell membrane due to
the opening of voltage ga.ted‘N at channels. The value of the conductance Gy,
will therefore be voltage V;, dependent.

o Gk represents the change in K* permeability of the cell membrane due to the
opening of voltage gated K+ channels. The value of the conductance Gg will
therefore be voltage V,, dependent, although this dependence is much softer
than for Gy,.

The loading effect of all the axons of the neuron (that will propagate the electrical
impulses to other neurons) is modeled here by a distributed RC line. More precisely,
the axons should be modeled by a distributed line of elements like the circuit com-
prised by broken lines in Fig. 44. Such a distributed line would be able to regenerate
the action potential along its way to the next synaptic connection without degrading
it. _

It is worthwhile to mention here that action potentials can be produced in any
living cell if properly excited [38). Their generation is a property of the cell membrane.
What makes the cells of the nervous system unique in this sense is that they are able
to propagate action potentials through their axons and synaptic connections to other

cells,
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The part of the circuit of Fig. 44 enclosed by broken lines is very similar to the one
that Hodgkin and Huxley proposed in 1952 [39] to relate current and voltage through
the nervous cell membrane during an action potential. They provided mathematical

expressions for the different conductances,

Gya xmh
R o (27)

Gy x n*

that were governed by tiine and voltage dependent-differential equations,

Moo(Vm) —m
h ?f'“;m) !
h = -w—n(!—:/:)—— (2.8)

o Taf Vi)

The functions Mmee( Vi), Ta(Vin )s Boo(Ven )5 5 (Vi )y oo (Vin) and 7o(Viy) are only voltage
dependent and are depicted in Fig. 45. ' '

The model of Hodgkin and Huxley explains very well the generation of the action
potential, but fails to explain the generation of more than a single impulse, such as the
complex firing patterns that characterize most neurons [38]. These type of patterns
can be explained, however, by the presence of other ionic channels in the membrane.
Their global effect is similar to allowing the Na* channels to remain open as long
as the membrane voltage is above the threshold that opens them. In the following
Section we will consider a simplification of Hodgkin and Huxley’s model by FitzHugh
and Nagumo [40, 41, 42], where the Na* conductance is only voltage dependent
(but not time dependent) and, therefore, is able to model the generation of trains of
pulses.

In the circuit of Fig. 44 we have included a current source that represents the
Na* — K+ pump. That current source should not be considered as forming part of
an electrical circuit that explains the generation of action potentials, because this
pump works independently of the action potential and its function is only to aveid
accumulation of Na* ions inside the cell and of K+ ions outside. Also, the load of
the distributed RC line can be neglected for most practical purposes.

Another aspect we would like to mention before ending this Section is how to

model the synaptic interconnections between neurons. Remember that when an elec-
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Fig. 45. Hodgkin-Huxley Curves for Voltage-Only-Dependent Functions of Equations
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trical impulse reaches the end of the axon, i.e. the synapse, a certain amount of
neurotransmitters is released into the synaptic cleft between the synapse and the
next neuron. . These neurotransmitters remain in the synaptic cleft for a few mil- .
liseconds and open some of the chemically gated Nat or C!~ channels. The more
excitatory neurotransmitters are released, the more chemically gated Na* channels
will open and the more likely it is that the membrane voltage will reach the —50mV
threshold that opens the voltage gated Na* channels, generating the action potential.
The more inhibitory neurotransmitters are released, the more negative the membrane
voltage will become and the less likely the threshold will be reached. For each neuron
that is receiving neurotransmitters from all the synapses connected to it, a spatial
and temporal summation of all the inputs is performed. Spatial in the sense that each
synapse is contributing to increase (if excitatory) or decrease (if inhibitory) the mem-
brane voltage when it receives an electrical impulse, and temporal because the more
electrical impulses arrive the more neurotransmitters are present in the synaptic cleft
before there is time to inactivate them (for further recycling) and a higher variation
in membrane voltage is achieved. This effect can be modeled by the following two
differential equations, _

.Ceje = —a.l. + 5. Z v:'+

: (2.9)
Cili = -ali + B3 V)
J

where V' are the electrical signals at the excitatory synapses, ;™ are the ones at the

inhibitory synapses, and C., C;, a., o, B and 5; are time constants related parame-
ters. f

C=C.=¢C; .
FE = b o)
B=p=p
I=L-L
equations (2.9) can be reduced to |
Cl=—al+B(3 V-3 V) (2.11)
i 3

A circuit that implements this equation is shown in Fig. 46. The effect of the inte-
grator in Fig. 46 or the time derivatives in equations (2.9) and (2.11) is what models
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Fig. 46. Circuit Diagram for Modeling the Synaptic Connections to One Neuron

the fact that the neurotransmitters remain active for a finite period of time {a few
milliseconds) inside the synaptic cleft.

C. FitzHugh-Nagumo Neuron Model and Circuit Implementation

1. Theoretical Model

The simplifications introduced by FitzZHugh and Nagumo [40, 41, 42] in the circuit
comprised by broken lines in Fig. 44 are a different modeling of the Na* and K*
conductances. Since the Nat current characterized by Gy, is a fast one that strongly
depends on the membrane voltage, it is modeled by a timne independent nonlinear
conductance, as is shown in Fig. 47. On the other hand, the K* current is a slow
current that does not depend very nonlinearly on the membrane voltage. Therefore,
Gk can be modeled-by a linear resistor R connected in series with an inductor L
and a voltage source Ex that represents the membrane resting potential, as shown
in Fig. 48. This model is ma.thema.tlcally described by the following set of first-order
differential equations,

Cm—*-—- *'-I—t' — fne(Vm
3 &~ Inel Vo) (212)
L——V + By - Rig
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Fig. 47. Ne* Current As a Function of Membrane Potential in the Simplified Model
Proposed by FitzHugh and Nagumo

inside \I

outside

Fig. 48. Equivalent Circuit for FitzHugh-Nagumo Neuron Model
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2. Circuit Derivation

We would like to have an equivalent circuit of FitzHugh-Nagumo’s model suitable
for a CMOS implementation. The circuit of Fig. 48 is not adequate for this purpose
because of the presence of inductor L. Therefore, we will use a specific circuit design
technique, called Transconductance-mode (T-mode), that will allow us to implement
equations (2.12) directly into a circuit that only has capacitors and transconductance
amplifiers, both appropriate for CMOS VLSI.

We will first present this circuit design technique as a general tool for implement-
ing a circuit that solves a general system of N nonlinear first order time differential
equations in the variables z;,22,... 2N,

N N o
Yoi + Y _gizi+ fi(x) + ) By#i=0, j=1,..N (2.13)

i=1 i=1
Yoj, 9i; and B;; being constant parameters and f;(*) nonlinear functions of x =
{1, 23,...2x). Consider now the circuit of Fig. 49. It consists of N nodes of voltages
z;. Each node j is connected to ground through a capacitor C;; and to each other
node i through a capacitor C;;. Two current sources Ir; and Iy; are also connected

to each node j. Ip; is linearly dependent on the node voltages of all the other nodes,

N
In; =3 gii%i + yos (2.14)

=1

where g;; (which can be positive or negative) is the transconductance relating interac-
tion between nodes ¢ and j, and y,; is an offset term. In; is a nonlinearly dependent
current source, : .
Inj = fi(z1,...2n) = fi(x) (2.15)

For each node ;j the following KCL equation holds,

: N . & (FEERTE-Y; QS =
voi + 2L 05T+ f5(%) = Y Gyl = %-'f‘*' Ciit; (2.16)
=1 = R R S AR o
If we define now, | Do
By=d o T @
. _tf\;lCJh ifl = J . : iizs

CONYS

we obtain the set of equations (2.13).
By comparing equations (2.12) and (2.13) we can see that equations (2.12) are



a particular case of (2.13) for N = 2,

Cazz = yo2 — ImaZ1 —' f(zz)

{2:18)
CriEr = Yor + 9m1 T2 — gma®1 :
if we do the following assignments,
Vi =23, ix =z, 1=§l‘-’;, EK=:°‘1, -
m, m .
_ Ca _Cn _ 9m3 _ J(za) (2.19)
Cm =" L= s =T an(Vm) =
Im2 gm1 9m1 Gmz2

By drawing now the circuit of Fig. 49 for equations (2.18) the circuit shown in
Fig. 50 is obtained. The exact form of the function f(-) seems not to be very critical.
Originally, a cubic polynomial [41] for Fig. 47 was suggested, but a piece wise linear
dependence can give the same basic properties to the system [40]. We will consider
f{-) as shown in Fig. 51.

The nonlinear resistor of Fig. 50 with the driving point characteristics of Fig. 51
can be implemented in T-mode by the circuit shown in Fig. 52 [36, 43).

3. Circuit Dynamics

A phase portrait of the equilibrium points of the system described by equations (2.18)
is shown in Fig. 53, where g, — g, = 9. — g, = g1- The equilibrium points are obtained
when 2, = 2; =0, i.e., they are obtained by the intersections of the two curves,

Yoz — maTy — f(xz) =0 (220)

Yor + gmi1%2 — Gmaly1 =0

Since there is a nonlinearity with three linear segments, we can divide the phase plane
into three linear regions, namely, regions (9, (3 and (3 as shown in Fig. 53. Each one
of these linear regions will have its own unique equilibrium point. If this equilibrium
point lies inside its own region it is called real equilibrium point. If it lies outside
the region that defines it, it is called virtual equilibrium point. Note that a virtual
equilibrium point cannot be reached by the system, because as soon as it goes into
another region the equilibrium point of this new region is different. The function f(-)



Fig. 49. General Topology Representing N Nonlinear Differential Equations
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Fig. 50. T-mode Implementation of FitzHugh-Nagumo's Equations
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Fig. 51. N-Shaped Piece Wise Linear Function for Ndhlinear Element of Fig. 50



Fig. 53. Phase Portrait of the System Characterized by Equations (2.18)
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is defined as, r
o Ey(gx + @), for region 3

Hz2) = —goza,® ' for region (3 (2.21)

HNzy +.Er(9'a-+ @), for region (3
Therefore, according to equations (2._18), for region () the linear stable equations are

given by, ) s
CLE L e
Bl -G &llwl &
Therefore, the equilibrium point A for region (9 is defined by,
i e AR N BT I
= i 4 = - N = .
W=l e sl TR i o
Cnn Cn " O Cn Cag 22

As can be seen in Fig. 53 the real and virtual nature of point A can be switched
by changing y.; and/for y,;. However, the stability characteristics of point A are
independent on ¥, and y,z. The stability is defined by the trace T, and determinant
A, of the matrix in equation (2.22). In Fig. 54 we give a classification of equilibrium
points according to the values of T, and &, [44]. Equilibrium point A of region ()
will therefore be unstable if, -

T,=Se _Im .-
: Caa OCn : (2.24)
'A __u.gmlgmz aGm3 !

o - > 0
CuCn Culn
For regions (3 and (3 we can describe the behavior of the system by
i “

Lz - - ,; 2. '-“‘"—Z‘,ﬁ‘%’*l :
where o = —E, for region (3 and a = +E; for region (3. The equilibrium points B
(for region (3) and C (for region (@) will be stable if

Ca C :
Ay = Gmigme + gllglma ' (2'26)
Cl! 022 Cll C??
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Fig. 54. Classification of Equilibrium Points According to the Values of 7, and A, in
Their State Equations
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For proper operation of the system we need to make A unstable and B and C stable
equilibrium points. Suppose now that, for a certain value of y,; and y,2, A is real
while B and €' are virtual. Suppose also that the system is at a certain time in
region (3 of Fig. 53. Since A is unstable the system will move away from it until it
eventually reaches region (9 or (3. When this happens, since the equilibrium point
(B or C) is stable, the system will be attracted by it. But before it is reached, the
system will find itself again in region (§) and repelled by A. As a consequence of all
this, the system will oscillate in a limit cycle in which it goes from regions (3 to 3
and vice versa crossing region () each time.

By changing, in Fig. 53, the relative position of the curves £, = 0 a.nd 2 = 0,
through g, and/or y,2, we can make B or C become real equilibrium points and A
a virtual one. If either B or C is real, the system will reach the stable equilibrium
point and stay there. Therefore, no oscillations will be produced. This corresponds
to the resting state of the neuron where no action potentials are generated. But if y,;
and/or y,2 is changed beyond the threshold value that makes either B or C change
from real to virtual and vice versa, the system will start to produce oscillations (the
neuron is active and firing action potentials). Note that (see equation (2.19) and
(2.19)) y.2 represents the total excitation current I = I, — I; of Fig. 44. Note also
that, as can be seen in Fig. 53, for both y,; and y,» there is an upper and a lower
value that will stop the oscillations. This means that FitzHugh-Nagumo's equations
represent a double threshold system.

4. Experimental Results

An IC prototype for the circuit of Fig. 50 was fabricated in a standard 2um double-
metal, double-poly CMOS process using the MOSIS IC fabrication facility {36]. The
OTAs or transconductance amplifiers employed were linearized ones [45]. The diodes
were implemented using diode-connected MOS transistors. When the two external
inputs y,; and y,2 are set to zero, the outputs of the circuit z, and z, are free
running oscillations. i the time constants of the two differential equations (2.18) are
made very different, i.e., & < &2 then Fitzhugh-Nagumo’s equations simulate the
behavior of biological cell membranes. The corresponding measured response of the
circuit for this case is shown in Fig. 55.

When signal y,2 is considered as the input to the neuron {yo1 = 0) and z; as
its output, we can see in Fig. 56 the measured input-output relationship of the cell,
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Fig. 55. Measured Free-Running Oscillations for the Circuit of Fig. 50 When
Im1/Cr1 € gma/Ca2

where y,3 is the lower trace and z3 is the upper trace. Note that the circuit models
the behavior of a double-threshold neuron: if the input is either above the upper
threshold or below the lower one, no oscillations are produced. But if the input is
between the two thresholds, the output is a firing sequence of pulses.

Using the interconnection principle of Fig. 46 we interconnected two FitzHugh-
Nagumo cells as shown in Fig. 57, using two neurons of Fig. 50 and two lossy inte-
grators. The output of the two neurons is shown in Fig. 58.

D. Hysteresis Neuron Model and Circuit Implementation

The motivation to develop simpler neuron models (but still keeping the oscillatory
nature) is based on their potential use [46, 47] in implementing hardware for neural
network architectures. The free-running oscillator of FitzHugh-Nagumo's system can
be further simplified to a hysteresis oscillator if, in equations (2.18), we impose the
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Fig. 56. Input-Output Relation of Oscillator of Fig. 50; Lower Trace Is Input Yo2
(¥01=0), Upper Trace Is Output x;

Fig. 57. Connections of Two Oscillatory Neurons in a Loop
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Fig. 58. Response of a Two-Neuron-Loop Oscillator

following conditions,

9e— 9o =G — ga — o0 in f(z3)

Yo1 = Yoz =0 (2.27)
Gmr _ Gm3
= <K< 5— -
Cll 022

The consequence of this is that the first equation in (2.18) will reach its steady state
immediately. Therefore, it can be reduced to,

_{(=z)

n= 2.28
1 pn (2.28)

Taking the inverse of equation (2.28) yields,
Iy = H(21) (229)

which is a hysteretic transfer function, as depicted in Fig. 59. Hence, equations (2.18)

simplify into, c
H(Z]) - 21331 — ii] =0 (2.30)

ml 9m1
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Fig. 59. Hysteresis Transfer Function Extracted from FitzZHugh-Nagumo’s Model

The equilibrium points of this system'(il = D) are given by the intersection of the

two curves,
y=H(z)

¥ =m1h

(2.31)

as is shown in Fig. 60. If fmldmd > g5, the only equilibrium point is A, which is
unstable according to the analysis in Section B. In this case, equation (2.30) represents
an oscillator. But if m:fm < gms3 there are two more equilibrium points, B and C,
which are stable, so that the system will stop in either one of them and then no
oscillations will be presént. Therefore, the oscillator (neuron) can be turned on and
off by changing gm3. A circuit implementation of a system similar to this has already
been presented in [48]. For a CMOS implementation it is however easier to substitute
the linear resistor g} by a nonlinear one, as shown in Fig, 61 {49]. This would change
equation (2.30} into,

H(zy) — f(z:1) - ;Cﬁ:bi =0 (2.32)

A circuit diagram that realizes equation (2.32) is shown in Fig. 62. Note that the
shape of the nonlinear resistor has to be able to change in the way shown in Fig. 61,
so that the two equilibrium points A and B can be obtained. When equilibrium
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Fig. 62. Block Diagram of CMOS Circuit for Modified Hysteretic Neuron Cell

point A is obtained, since it is unstable, the system will oscillate. But if B is the
equilibrium point, since it is stable, the oscillations will disappear. An appropriate
CMOS implementation for the nonlinear resistor is shown in Fig. 63. If z, is positive
the current I. goes through M, and is reflected to the input node so that f(z;) = I.
If z; is negative, I, goes through M; and no current is reflected back to the input
node, f(z,) = 0.

In order to implement the T-mode hysteresis element (note that the output is a
current while the input is a voltage) of Fig. 62, we can use the circuit diagram given
in Fig. 64. The operation of the double output transconductance amplifier in Fig. 64
is defined approximately by the following equation,

I,, ifv>0
i= (2.33)
—I,, fu<0.

Therefore, when v > 0 then i = I,, > 0 and v = E+ - z, which means that » < E*.
On the other hand when v < 0, then i = —1I,, < 0 and v = —E~ — 2, which means
that £ > —E~. Summarizing,

L., ifz < Et -
i= . (2.34)
_I.‘, if r> —E—

which is a hysteretic function.
A complete CMOS circuit for the neuron or oscillator of Fig. 62 is shown in
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Fig. 63. CMOS Circuit Implementation for Nonlinear Resistor

Fig. 64. Circuit Diagram for T-Mode Hysteresis Amplifier
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Hysteresis Element ~ | Nonlinear Resistor
Fig. 65. CMOS Circuit for the Modified Hysteretic Neuron Cell

Fig. 65. .
This simple oscillator was fabricated in a 3um double-metal CMOS process [49]
using MOSIS. The input (u. in Fig. 62) output (z in Fig. 62) relationship for this
neural oscillator is shown in Fig. 66. The parameters that can be adjusted in the
neural oscillator of Fig. 65 are I,,, E* and E~. E* and E~ control the amplitude of
the oscillations at z(t), and I,, controls the slope of the triangular waveforms. The
three of them can be used to change the frequency of the oscillations.

We also connected a two neuron loop, like previously mentioned with Fig. 57,
using these hysteretic type oscillators. The result is shown in Fig. 67.

E. Non-Oscillatory Neurons

In many applications it is not necessary o use oscillatory neurons for building artificial
neural networks. In these cases the output of the neuron can be thought of as a
representation of the frequency of the output signal of an oscillatory neuron. Asshown
in Fig. 68 several dependences between input excitation signal and output frequency
are possible. In CMOS circuits, the most easy to implement is the sigmoidal type. A
simple CMOS inverter pair (see Fig. 69) will provide this characteristic if the input
as well as the output of the neuron are voltage signals.

In many situations the width of the transition region is too narrow for the simple
inverter pair neuron. If this is the case the circuit of Fig. 70 can be used. For the

case of an input voltage output current neuron a transconductance amplifier can be
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Fig. 66. Input-Output Relationship for the CMOS Hysteresis Neural Oscillator

Fig. 67. Pattern Generation by a Loop of Two Hysteretic Neural Cells
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f(x) f(x) “f(x)

(a) ®) (©

Fig. 68. Different Dependences between the Qutput (Frequency) of a Neuron and Its
Input; (a) Step Function, (b) Piece-Wise Linear Approximation, (c} Sigmoidal

Function

et

{a) S

Fig. 69. (a) CMOS Inverter That Implements the Sigmoidal Voltage Transfer Curve
Shown in (b)

/s —4 s
(®) Vs (b)

Fig. 70. (a) CMOS Circuit for Smoothed Sigmoidal Voltage Transfer Function Shown
in (b) '
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o Iinput Vo V—
St
—_.—_- R Vx

Fig. 71. Input Current Qutput Voltage Neuron Circuit Diagram

I input
)

Fig. 72. Relation between Variables of Equation(2.36)

used. And for the case of an input current output voltage neuron, as shown in Fig. 71,
we can do the following transformation. V..: and v, are related through a sigmoidal
voltage-to-voltage function,

Vou = f(vz) = f(RLinput) (2.35)
Taking the inverse function of equation(2.35) yields,
1
Iinput = Ef“l(v:mt) (236)

which is depicted in Fig. 72. But this can be viewed as the driving point characteristics

of a nonlinear resistor as shown in Fig. 73.
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Fig. 73. Circuit Implementation of Nonlinear Resistor (Current Input Voltage Gutput
Neuron) with Driving Point Characteristics of Fig. 72

F. Conclusions

In this Chapter we have given a biological description of the main working mechanisms
involved in the excitation of nervous cells. This description allowed us to derive a
mathematical model for describing the dynamics that govern the electrical signals
inside a living neuron and also the dynamics of the interactions between neurons.
This mathematical model, together with some simplifications, made it possible for us
to provide an electrical circuit that simulates these equations. This way we had a
circuit for simulating the neural FitzHugh-Nagumo equations. Further simplifications
of this model guided us towards the Hysteresis model of the neuron behavior and
the corresponding CMOS circuit for its physical implementation. Representing the
frequency of the firing neuron by a voltage signal yields a drastical simplification for
the neuron model, in which it is represented by a static input-output characteristic.
This also allows very simple neuron models with very few transistors, like a simple

digital inverter.
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CHAPTER I1I
drovk L0
HOPFIELD TYPE NEURAL NETWORK IMPLEMENTATIONS; THE
PROGRAMMABLE APPROACH

In this Chapter we are going to consider implementations for Hopfield type of neural
networks. The term Hopfield type neural network is here equivalent to fully intercon-
~ nected neural nelwork '. As we mentioned already in the first Chapter, Hopfield’s
algorithm 1s a typical example of a neural network that leads to a programmable
hardware implementation. Of course, it is not impossible to build a learning Hop-
field circuit, but most of the times, even in software simulations, the weights are
preprogrammed into the network. In this Chapter we are going to consider issues
that are relevant to programmable neural network hardware circuits, and we are go-
ing to illustrate this by using Hopfield type of networks as examples. First we will
present some of the implementations that have already been reported in the litera-
ture. After this we will propose a new implementation approach based on T-mode
{transconductance-mode) circuit design techniques [50}. This approach has the prop-
erty of making the network modular, in the sense that it can be split into different
subcircuits that can be put into separate chips. Hopfield networks described up to
this point can be considered unconstrained optimization networks, because they min-
imize a certain Energy function [20, 21, 22, 23). With some modifications this kind
of circuits can be extended to constrained optimization networks, in which the system
minimizes an Energy function while satisfying some given constraints. We will show
2 T-mode implementation technique for these circuits, and demonstrate that it is a
generalization of the standard Hopfield network. An interesting difference between
the unconstrained and the constrained optimization networks is that the outputs of
the unconstrained ones are always binary, while the outputs of the constrained ones
can be analog. '

Another issue to be considered in this Chapter, and which is mandatory for
programmable type of neural networks, is how to store the analog weights of the
synapses. 'We will show different techniques that can be used for this purpose and
that are available in the literature [51, 52, 53].

IN ote that by this token all other neural networks that are not fully interconnected
can be viewed as a particular case of a fully interconnected network



Finally, in order to finish the Chapter, we will present T-mode implementations

of neural networks using oscillatory type of neurons like those presented in Chapter
IL.

A. Some Reported Examples

Hopfield’s network is without any doubt the one that has popularized the area of
neural networks in the last five years. Artificial Neural Network research is old (it
started formally in the sixties), but before Hopfield it was perceived as an obscure
and complicated area of knowledge. After Hopfield introduced his simple network, al-
though not the most efficient available, most of the researchers unfamiliar with neural
networks started to understand this area and see the potential applications. Since
then Hopfield’s network has been the research target of many authors and thousands
of papers have appeared based on his algorithm. Of course, the publications that
have appeared proposing IC hardware implementations are also very large. In this
Section we will illustrate the hardware implementation issues of Hopfield’s network
with three selected examples. The reason why we have selected these examples is
because of their nature. They are an analog, a digital and a mixed analog-digital
implementation, respectively.

1. Hopfield’s Implementation

The first authors that gave a circuit implementation of Hopfield’s neural network was
Hopfield himself together with Tank {23]. The simplicity and beauty of Hopfield’s
neural network algorithm made possible a direct analog hardware implementation.
Hopfield’s algorithm can be viewed as a single layer neural network in which each
neuron has a synaptic connection to all the other neurons but not to itself, as is
shown in Fig. 74. In the general case each neuron can also receive an external input.
The set of neuron outputs constitutes the output of the network, while the set of
external inputs to each neuron constitutes the input to the network. The system
shown in Fig. 74 is described by the following set of first order nonlinear differential
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equations 2,

:i:.-—-}-—a:.+I +S wif@), i=1,...N
y=1 (3.1)

o:;>0, w_,-j-=0, j=1,...N
where z; describes the state of neuron %, I; is its external input, f(z;) is its output
and wj; is the weight of the synapse interconnecting the output of neuron j to the
input of neuron ¢. f{-) can be a sigmoidal, piece-wise linear or step function as long as
it is monotonically increasing and saturates to a maximum value fm.. for sufficiently

high inputs z;, and to a minimum value fn;s for sufficiently low inputs z;.

e Theorem: if the weights are symmetric w;; = wj;, Hopfield’s network converges
to a stable state that is a minimum of the Energy function,

=“-Zzwuf(w;)f(z;)+2m [ f-'(u)dv—gz..f(z,-) (3.2)

i=l j=1 =1 L=l

e Proof: by taking the time dei'ivative of equation(3.2) we obtain,

= "E):wuf (m.)f(z,)z. +E—z,f"(z )& — Z:If(x‘)z‘

e—l =1 |=1 =1 (33)
_ E {f’(m.)z. LZ w.,f(:c,) - —:r:, + I] }

where the part between brackets is the right hand side of equation (3.1). Since
f(-) is monotonically increasing we have f'(-) 2 0. Hence,

-3 fEdit <0 (3.4)

i=1

Therefore, Hopfield’s algorithm will make E to decrease in time, and since E
is bounded from below (see equation (3.2)) a minimum of E will be reached in
the steady state.

3 Cprollarf: in the case of the gain limit (or step function) for f(-) the integrals
term of equation (3.2) are zero and Hopfield’s network minimizes the Energy

?Each term in this equation is preceded, in general, by a dimensional scaling
constant
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Fig. 75. Voltage Amplifier Input-Output Characteristics Used by Hopfield and Tank
for Their Hardware Implementation: (a) Noninverting Amplifier, (b) Inverting

Amplifier
function, :
1 N N N .
E=-3 ST wiif(m) fles) — 30 Lf(e:) (3.5)
i=1 jm=l1 =1

For the hardware implementation of his algorithm Hopfield and Tank used, as
neurons, a pair of voltage amplifiers with the input-output characteristics shown in
Fig. 75. The noninverting amplifier connects to the synapses with positive weight
value and the inverting amplifier to those with negative weights. The pair of ampli-
fiers of each neuron have a finite input capacitance C and input resistance B. The
complete circuit is depicted in Fig. 76. Note that in Fig. 76 each synaptic connection
has two resistors A, and RY;. In the actual implementation only one of the two is
simultaneously present,

Ry =00, Ry=wj', ifw;>0

Ry =-wj', R;=o00, ifw;<0 | (3.6)

L5 oY

.R}}=00, Rfj;—oo, ifw.','r—o

Applying KCL to the circuit of Fig. 76 yields,

. 1 al
Cii= —=zi+ L+ ) wjiflz;)
k i=1 (3.7)
af‘ =R! +iji

i=1

which is completely equivalent to equation (3.1}.
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Fig. 77. Sigmoidal Relationship between Pulse Density of Neuron Output and Value
of Non-Pulsing Input Signal '
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Fig. 78. Circuit for Pulse Stream Neuron

2. Pulse-Stream Analog/Digital Implementation

The pulse-stream approach proposed originally by Murray and Smith [54, 55} and
further developed by Murray and Del Corso [46] is & very good example of a mixed
Analog/Digital hardware implementation for neural networks. The authors propose
their ideas as a general technique for implementing programmable neural networks.

The basic idea is that the information is coded by a stream of equal puises. If
the neuron state is fully on, its output would be a stream of high pulse density. If
it is off, there would be no pulses at all. If it is in the transition region, the pulse
density is between zero and the maximum value.-

Each neuron j is a circuit that receives an analog non-pulsing signal z; and gen-
erates a stream of equal pulses at the output with a pulse density that is a sigmoidal
function of z;, as is shown in Fig. 77. A circuit that implements this kind of neuron
is shown in Fig. 78. With this type of neuron in mind, the synaptic circuitry has to
be such that the output V; of a neuron is multiplied by a weight w;; for each synaptic
connection going out from neuron ¢ to neuron j, and that all the inputs w;;¥; to
neuron j have to be summed and integrated in order to generate z; for neuron ;.
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Fig. 79. Pulse-Stream Synaptic Circuits and Neuron

A circuit that would perform all this is shown in Fig. 79. It uses simulated resis-
tors designed with switched capacitor circuit techniques. According to this, a pair of
switches with a capacitor, as shown in Fig. 80, can be approximated by a resistor of

value [56] T

" Cr

R

if the following conditions are satisfied:

(3.8)

e the two clock signals ¢; and ¢, are nonoverlapping, so that the two switches
are never simultaneously on,

¢ and the clock frequency of ¢; and ¢, f. = 1/T., is much higher than the
bandwidth of the signals of the circuit the simulated resistor belongs to.

Based on this, each synaptic connection {for example, the one with weight w;;) is
equivalent to the circuit shown in Fig. 80, where the current I;; contributed by this
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synapse is going to be _
I = -Cr=t (3.9)

where T; = 1/ f; is the frequency of the output signal of neuron :, which is a sigmoidal
function of z;. Therefore,

I; = —-ng‘-,-f(z,-) (3.10)

This means that, if the switched capacitor approximation is valid, the system of
Fig. 79 is described by the following differential equations,

9 1 N : |
Cij = --R—}-Sj + Ij + ZCRw‘-_,-f(a:g), j=1,...N (3.11)
i=1

The voltage sources —w;; in Fig. 79 are implemented using the circuif shown in
Fig. 81, where the capacitors have to be refreshed periodically.

3. Stochastic Logic Based Digita.l Implementation

The reason why we have chosen this example [57] to illustrate a digital implemen-
tation of programmable neural networks is that it was reported as the fastest digital
one, at least at the date the paper was submitted for publication (June 20, 1988).
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Fig. 83. Generation of Stochastic Weight Signal

The basis of stochastic arithmetic is shown in Fig. 82, where two stochastic
signals are multiplied. Suppose the two digital stochastic signals have probabilities
p1 and p; of being 1 (or of not being 0). If these two signals are the input to a digital
AND gate, the output will be another stochastic digital signal characterized by a
probability ps = p1ps of being 1.

Suppose now we have a digital word representing the weight w;; and a random
signal word R, with uniform probability distribution over a certain interval. Asshown
in Fig. 83 these two digital words are compared using a digital (multibit) comparator,
whose output is a single bit such that it is, '

1, if R, <uw
0, if R.>w

(12

The output of the comparator will be a single bit digital stochastic signal of proba-
bility w;;. If this signal is now ‘anded’ to the output signal of neuron i (represented
by another single bit digital stochastic signal of probability V;} the result is a signal
of probability w;;V;. If the state of neuron j, u;, is represented by a digital word
inside a counter C',-', we can alter its state according to the contribution of synapse
w;; by making the counter count the bits of the stochastic signal w;;V; during a fixed
time window. The counter should be set to the increment mode if the sign of wy;;

was positive, and to the decrement mode if the sign was negative. This is illustrated
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Fig. 84. Stochastic Logic Circuit for Synaptic Connections to a Single Neuron

in Fig. 84, where all the synapses to neuron j are being connected sequentially to
its counter. The word u; represents the state of neuron j. This state has to be
transformed inte a stochastic single bit signal of probability V; = f(u;}, where f(-)
is either a step function, a piece-wise linear function or a sigmoidal function. This is
done, as shown in Fig. 85, using a digital (multibit) comparator and a random number
generator Ry. By altering the probability density function, the shape of f (-) can be
altered, as illustrated in Fig. 85. The fact that during a certain time interval only one
synapse is connected to one neuron (see Fig. 84) allows a pipelined implementation
of this structure. This is depicted in Fig. 86 for a four neuron Hopfield network. The
- weights as well as the neuron states are cycled in shift registers in the way depicted
in Fig. 87. .
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Fig. 85. Implementation of f(-) Using Stochastic Techniques

B. T-Mode Implementation; The Modular Approach

In a Hopfield network, and in general in a neural network, what usually needs to be
implemented is the following set of differential equations,

N
Gi?j = —az; + IJ' + Zw“jf(zi), J =1,.. .N (3°13)

i=1
Fig. 88 shows a circuit that uses transconductance amplifiers of transconductance

gain w;; to implement the synaptic interconnections. This circuit implements the

equations,

: D N _
Ci;=—gzitLi+ L waw, j=1..N
b RITH ; i @.14)

= f(2)
which is equivalent to equations {3.13).
Once the steady state is reached, note that the association of resistor R and the

nonlinear voltage-to-voltage transfer function (see Fig. 88) can be substituted by a

nonlinear resistor, as is shown in Fig. 83, because

v = JUR) = I = 257 (w) (3.15)

This simplification would yield to a neural network circuit implementation like the
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1

Fig. 90. T-Mode Simplified Implementation of Hopfield Network

one shown in Fig. 90. The dynamics of the circuit in Fig. 90 are different to the one

in Fig. 88, and are described now by

: N
C!b:g(y:]‘l‘ L+Y wyy, j= 1,....N

9(y;) = 5/ (v5)
However, both implementations reach the same steady states and this is what makes
them to be equivalent for practical purposes. In the next Section, Constraint Op-
timization Circuits, we will show the stability of this circuit as a particular case of
general constraint optimization circuits.

The simplified circuit impleinenta.tion of Fig. 90 has the feature of modularity.
By this we mean that a complete network can be split into several parts and each one
of them can be put into different chips. This is illustrated in Fig. 91.

For the circuit implementation of the synapses it is not necessary to have very
linear transconductance amplifiers. Actually, a high degree of nonlinearity can be
tolerated as we will see in the experimental results in Chapter V. Therefore, a very
simple transconductance amplifier can be chosen, like the one shown in Fig. 92. In
this case the weight, which is the central slope of the transfer curve in Fig. 92(b)
can be programmed by changing Iss, which depends on the voltage stored in V; [4].
This circuit, however, can only provide weights that do not change in éign. If the
neural network has synapses that should change in sign, then a different synapse
implementation is needed. In these cases we can ‘use a transconductance multiplier,
like the one shown in Fig. 93, based on Gilbert’s cell [58].

In order to implement the nonlinear resistor (see Fig. 89) a pair of MOS connected
diodes can be used, as is shown in Fig. 94, where Vr, and. Vr, represent the threshold
voltages of the PMOS and NMOS transistors, respectively. '

Another implementation is possible using a pair of comparators and two MOS
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Fig. 93. (a) Circuit Implementation of Transconductance Multiplier, (b) Transfer

Curves I, versus V, for Different w;; Values
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Fig. 95. (a) Improved Nonlinear Resistor Implementation, (b} Transfer Curve
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transistors, as is shown in Fig. 95. The main ad:vanta.ge of this circuit is that it
provides steeper slopes at the limiting voltages —E and +E.

C. Constraint Optimization Circuits

In the Hopfield network described so far the steady state outputs have always one of
the two values fimin OF fmer (see Fig. 75). In the case of the constrained optimization
circuits that we will see here, the steady state output will be an analog value within
a range {f’ .. f.e)- The constrained optimization circuits that we will describe
here correspond to a type of circuits that solve problems known by the name of
nonlinear programming {59, 60, ﬁl].. The circuits we will present here will solve linear
programming and quadratic programming problems.

Several programming circuits have been proposed so far [23, 62, 63, 64, 63, 66
for solving constrained optimization circuits. We are going to propose a novel circuit
based on T-mode circuit design techniques, which is a modification of Chua’s circuit
(65, 67], more appropriate for CMOS VLSI implementations.

1. A General Circuit for Constrained Optimization

Consider the general problem of minimizing a given scalar cost function in the vari-
ables vy,v2,... v,

Q(Ul, Vgyeuo Uq) . (3.17)
subject to the constraints, s e W
filvr,vay.. v} 2.0

Falvr, 02, v) 3& (3.18)

folvr,va,...0) 2 0
where ¢ and p are two independent integers. Mathematically this problem is solved
using the Lagrange Multiplier Method [59, 60, 61, 68], by defining the Lagrange

Function,

i
L(v1,v2,.. .95, A1y Az, .. r\,,) =®(v)+ Z Ajfj(\!) (3.19)

=1
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where {);}’_, are called Lagrange Multipliers. The solution to the problem is obtained

by solving,
650 0y g
Bop — Bue 5 (3.20)
i(v) 20, <0, fi(v)=0, j=1,...p

where the unknowns are {vi}i.;, and {A;}i.,. The circuit of Fig. 96 would solve
equations (3.20) if it converges to a stable steady state.

» Theorem: The circuit of Fig. 96 is completely stable in the sense that it will
never oscillate or display other exotic modes of operation [65], assuming the

following properties are satisfied:

1. At least one (and may be more) solution to the problem exists. Conse-
quently, the cost function is bounded from below within the region over
which the constraints are satisfied.

2. The functions ®(-) and f(-) are continuous, and all their first and second

order partial derivatives exist and are continuous.

o Proof: The circuit equations for the network are

8 K, 9f; _.
C,-v.-=—-———— /\‘—"—, —1,...q
5o~ &5 0 (3.21)
’\j =g(fj(v))? J = 11“°P

Since g(-), ®(-) and f;() are continuous, equations (3.21) can be written as
v(#) = h(v(2)) (3.22)

where h(-) is a continuous function from R¢ to R¢. Consider the scalar function

E(v): R - R, 0 o
E(v) =#(v)+Y, fo ™ gi(2)dz (3.23)

Taking time derivatives yields,

E = Z ”a+291(fJ(V) i;‘a“i

t—l ¥=1

= -yt

i=1

(3.24)
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Therefore, E < 0. This implies that E(#) is strictly decreasing unless v; = 0 for
all i = 1,...¢q, which corresponds to the steady state. This means that E(v) is
a Liapunov Function of the system, which together with the continuity of h(-)
ensures that the system is completely stable, i.e., any trajectory v(t) eventually
converges to some equilibrium point v* in ®? depending on the initial state v,
[69}.

This proof is based on dynamic considerations (see equation (3.21)) of the circuit in
Fig. 96. Chua showed that this circuit will also have a DC solution independently on

what dynamic elements are present in the circait [65].

2. T-Mode Implementation of the Quadratic Optimization Problem

This is a particular case of the general problem described previously, in which ®(:)
and f(-) are

R : G‘n t : G;,.,:: i
o(v) = [Al _A'] P+ %["1} : ”!] ' 4, . 1. \ (3.25)
EE B £ . E“‘“ Ga ... qu ve i
CTAY [Bu - Bu)[m] E] -
I3 P FRE N N P >0 (3.26)

Ba ... Byllvd L|E]

A T-mode circuit for the general circuit of Fig. 96 when @() and f(-) are defined by
equations (3.25) and (3.26) is shown in Fig. 97. The circuit equations for this circuit
are

» g
Co; = —A; = Y Biid; = 3, Gaw
7=1 k=1

A (3.27)
Aj = g(Y Biwor — Ej)
k=1

where the function g(-) is that of an ideal diode, as is shown in Fig. 96(b). According
to equations {3.25) and (3.26), equation (3.27) can be rewritten as,

P
Cv.=—@-215%&, i=1,...¢q
Ovi o 0w (3.28)
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which are exactly equations (3.21).
The linear programming circuit is a particular case of the quedratic progremming

circuit in which G;; = 0.

3. Hopfield T-Mode Circuit as a Particular Quadratic Programming Circuit

Hopfield’s algorithm can be expressed as a particular constrained quadratic optimiza-
tion problem, stated as follows.
Minimize i .
: i ! -
: S N R ; | G 'Gli " ‘

Gfl e . ’G,ﬂ: U' . -.-'_‘ *

-

e

. v, <
where G = 0, and subject to the constraints: ~ B R
h: w2z -E°
hiwm S +E*
fsr v > —E-
for v S HEE (3.30)

Jager:. {'.-" ?*-E—
fag: vy S +Eh:

The constraints equations in matrix form are,

- fro00 .. 05'0;:1_,5
ET e 0 L0 of 1o
; 010 ..00 -
o v [
'.? astd 100, ool -1 (3.31)
o] 1 L] L]
Y e o0 .0 1] |
000 ... 01
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Fig. 98. T-Mode Optimization Circuit for Hopfield’s Algorithm

The corresponding T-mode circuit (particular case of the circuit of Fig. 97) is shown
in Fig. 98. The circuits comprised by broken lines behave like nonlinear resistors.
Their transfer curve can be derived, with reference to Fig. 99, as follows,

+ .
-E xl xz +E

+1V
+1V — 1

Fig. 99. Nonlinear Resistors
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@) ()

Fig. 100. Nonlinear Resistor Transfer Curve for the Circuit Comprised by Broken Lines
in Fig. 98 -

w4

If —E¥+v20

(AP
A “;J

$1=0 8'1'=0

(3.32)

If 4E-+v>0 T2 =0

- >
If =E*4+v<0 = z; - ~00 = ij— 400
= = =0
. _

If +E-4+v<0 = 335 —00 = i3— 400

This corresponds to the nonlinear resistor transfer curve shown in Fig. 100. Therefore,
the circuit of Fig. 98 is completely equivalent to the one we showed in Figs. 90 and
91, and the nonlinear resistors can be implemented using the circuits in Figs. 94 or

95.

D. Weight Storage

One of the biggest problerh in hardware neural network circuit implementations is
. the way of storing physically the large number of weights available in a compact and
efficient manner. A standard digital memory does not seem to be the most efficient
way to perform this task, due to its large area consumption. Several alternative ways
have been proposed during the past years that can be classified into two large groups:

¢ Long Term Storage: the stored values remain even if the power supply to the
chip is turned off: Examples of this are the floating gate techniques [70, 71, 72]
and the MNOS technology [73].

¢ Medium Term Storage: the stored values remain as long as the power supply to

the chip is not turned off. This type of storage is done on a capacitor surrounded
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Fig. 101. Basic Structure of Floating Gate Transistor

by a refreshing circuit that will compensate for leakage currents.

We are going to describe now some examples reported in the literature for performing
weight storage.

1. Floating Gate Storage

Some industries have already available expensive high technology processes that allow -
the construction of efficient CMOS floating gates or MNOS transistors {70, 71, 73].
However, we are more interested in how to obtain this feature using a standard
inexpensive CMOS process {72, T4].

The basic idea of the floating gate approach is to build a transistor whose gate
terminal is not physically connected to anywhere. This is schematically illustrated in
Fig. 101. The control gate does not have to be necessarily on top of the transistor.
Now the issue is to somehow inject some charge into the floating gate or to extract
some charge from it, so that a certain Vgs is developed that will represent the stored
weight. The way charge is injected or extracted is using tunnel effect currents through
the oxide. In a special purpose floating gate process this is usually done by making the
oxide thickness between the floating gate and the substrate very small (10nm) [71],
50 that the electric field in the gate oxide may become large enough to produce tunnel
effect and allow interchange of charge between the floating gate and the channel or
n*t diffusion.

However, in a standard CMOS process we just do not have a thin enough gate
oxide layer that would produce tunnel effect for reasonable voltage levels. In these
cases a possible solution is to play “geometric tricks” to enhance the electric field
locally at some points between the two polysilicon layers [72, 74], and therefore
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Fig. 102. Floating Gate Approach for Conventional Double-Poly CMOS Process

inject or extract charge from the control gate. The “geometric trick” used by Sheu
[72], for example, is shown in Fig. 102. There is a zone between the two polysilicon
layers in which the electrical field will be enhanced for a given voltage difference, so
that tunneling can be produced with lower voltage levels. By applying voltage pulses
at V..o, charge will be injected into or extracted from the floating gate. The amount
of charge interchanged depends on the amplitude and width of the pulses. Sheu
reported measurements of charge retention for this circuit. For example, a charge
loss corresponding to 30mV gate voltage drop in 10 minutes was measured at 175°C,
which is equivalent to 25 years at 55°C.

2. Capacitor Refreshing Techniques

Several capacitor refreshing techniques have been reported so far. They can be clas-
sified into two groups:

o Finite Time Memories: they consist of a kind of refreshing circuit that partially
compensates for the leakage currents. This means that after some time the
memory value will be degraded. These circuits can be used if we need to have
the weight value tempofa.ri!y stored for a finite period of time but longer than

the one a simple leaking capacitor would provide.

o Stable Memories: they will assure that the stored weight will always {as long
as power supply is provided) remain within a predefined interval.

Let us now present some examples of these memories.
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Fig. 104. Switched Capacitor Implementation Exa.inple of Charge-Pumping Memory

a. Finite Time Memories

These memories receive sometime also the name of Short Term Memories [71]. Some

reported examples follow.

i. Charge-Pumping Active Ana]og Memories [51]

The principle is shown in Fig. 103. Capacitors C; and C; are matched as well as
the current sources I, and I,. The initial values are Vo3 = 0 {for capacitor Cy) and
Vo2 = wy; (for capacitor C;). When C; reaches Vy = 0, the voltage at Cy will be
Ver = w;;. At this moment the charge in C is transferred to C; and the cycle begins
again. However, due to mismatches in the capacitors and current sources the peak
values (w;;) at the capacitors will deteriorate. This circuit could be implemented
using CCD charge pump or switched capacitor techniques. Horio [51] proposed a

circuit for the latter case, which is shown in Fig. 104,
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ii, Master-Slave Active Analog Memory [31]

Another possible circuit consists of a master memory circuit that senses leakage
and sends control signals to slave memories (who are the ones that store weights)
in order to compensate for the leakage. This principle is illustrated in Fig. 105.
The opamp and resistors B, and R; implement a hysteresis amplifier that, together
with the capacitor and the switching current sources, will produce at C a triangular
waveform and at the output of the opamp a square wave signal. If the capacitors
and current sources in master and slave memory circuits are perfectly matched the
weights t;; will remain within a fixed voltage interval. However, in practice, the
mismatch will make this voltage interval at w;; to drift with time.

b. Stable Memories

These memories receive sometimes also the name of Medium Term Memories [71).
Some reported examples follow.

i. Multilevel Capacitor Storage [52]
This technique compares the stored voltage to a reference ramp signal, at a
given time interval that depends on the weight value, and restores the weight. With
‘reference to Fig. 106, the working principle of this circuit is as follows. H1 and H2
are two clock signals, where H2 is obtained by frequency division of H1. The ratio
between the H1 and H?2 frequencies is the number of discrete levels available for the
weight w;;. H2d is a delayed version of H2, and the delay depends on the value of
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the weight w;;. H2d is compared to a triangular signal V, synchronized with H2. A
phase detector generates a pulse P, that starts on the H2d rising edge and stops on
the next H1 rising edge. As long as the pulse P, is active, the weight voltage w;;
on the capacitor follows the ramp voltage V;. In this way the rising edge of H2d is
locked with the one of H1, which means that w;; is locked to the next highest discrete
voltage level. The authors claim that this technique is able to provide a resolution
of, at least, 8 bits in the weight values.

ii. Analog-Digital-Analog Conversion

To our knowledge, the first author to propose this refreshing scheme for neural
network applications was Weller et al. [53]. The principle is very simple and is
illustrated in Fig. 107. The resolution of this technique is, in principle, the resolution
of the A/D converter used,

In an actual implementation it is not necessary to build a complete A/D and
D/A converters. A circuit like the one shown in Fig. 108, based on flash conversion
techniques, is sufficient.

E. OséiHatory Type T-Mode Neural Networks

As we already mentioned in Chapter II, it is possible to implement on Silicon neurons
of the oscillatory type. Actually, researchers that work on pulse stream based neural
networks have also proposed neurons of this kind [46, 75, 76].

It is not obvious that pulsing neural networks would be more advantageous than
the non-pulsing ones. However, if practical ﬂoating—éate type of synapses are used,
and since they are programmed by pulses, perhaps it is more efficient to use pulsing
neurons to build such kind of neural networks. This would be even more obvious
if the weights need to be changed during the operation of the network, i.e., when
learning is implemented into the hardware.

In what follows we are going to show very briefly how to implement a Hopfield
type of network when using oscillatory neurons. Consider a neuron characterized by a
relation between its input nonoscillatory voltage z; and the frequency of its oscillatory
output as shown in Fig. 109. A Hopfield T-mode circuit implementation using this
kind of neurons is shown in Fig. 110. The output voltage of the neurons, which is
an oscillatory signal is transformed into currents by each synapse, correspondingly
weighted, and summed and integrated on the input node of the next neuron. In
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Fig. 110. T-Mode Implementation of Hopfield Network with Oscillatory Neurons
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Chapter V we will give experimental demonstrations of these kind of circuits.

F. Conclusions

In this Chapter we have considered the issues related to the hardware implementation
of programmable types of neural networks. As a typical example, Hopfield’s network
has been carried in this Chapter. We have proposed an efficient VLSI circuit design
technique for implementing neural networks, namely the T-mode technique. We have
used this technique to show how to design Hopfield networks, optimization circuits
and oscillatory type of neural networks. We have also presented a review of the
available techniques for storing the weights of synapses in a compact and efficient

way.
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CHAPTER IV

BAM NETWORK IMPLEMENTATIONS; THE LEARNING APPROACH
The subject of this Chapter is the considerations to be taken into account when
designing adaptive neural network hardware systems. By ‘adaptive’ we mean that the
set of weights are allowed to change in time according to some learning rule. This will
allow the system to adapt to its environment, where by ‘environment’ we understand
the sequence of input signals the system experiences. In this way, an adaptive (neural)
system will change its internal synapses (weights) in order to build a representation
of the outside world.

There are several adaptive neural network algorithms available in the literature
like the Backpropagation algorithm [13], the Adaptive Resonance Theory of Car-
penter and Grossberg [28, 29, 30], the self-organizing maps of Kohonen [77], the
adaptive bidirectional associative memory of Kosko [25, 26, 27] and more. We al-
ready described very briefly these algorithms in Chapter 1.

In this Dissertation we are concerned with analog implementations of neural
networks. Analog circuits are physical representations of continuous time differential
equations. This means that it is reasonably straightforward to design an analog circuit
that realizes the continuous time differential equations describing a neural network
algorithm. However, if an algorithm, together with its learning rule, is described by
discrete time difference equations it is not obvious to implement it with analog circuit
design techniques [78]. Furthermore, in Chapter I (see page 6) we showed that it is
possible to perform a mapping between a system described by discrete time difference
equations and an homologous one described by continuous time differential equations,
and vice versa. Therefore, in principle, any neural network algorithm should be
possible to be implemented in hardware using analog continuous time circuit design
techniques. In this Chapter we have selected just one of them in order to illustrate
the issues related to adaptive neural systems hardware implementations. The chosen
algorithm is Kosko’s continuous time adaptive BAM [25, 26]. There are several
reasons why we have chosen this particular algorithm among the others.

First of all, we would like to have an algorithm with a local learning rule, i.e.,
the changes in weight of a certain synapse w;; should depend only on signals avail-
able already to this synapse. Therefore, the Backpropagation algorithm is discarded,

because it uses a global error function to indicate the changes in synaptic weights
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[13].

On the other hand, we would like the differential equations describing the Short
Term Memory (STM) to be as simple as possible so that we end up with a reasonable
compact circuit implementation. This would eliminate ART algorithms because their
equations include shunting terms that require extra multiplication operations. Also,
we would like to have an interconnectivity between neurons (as well as between the
inputs and the neurons) as small as possible. By comparing Kohonen’s algorithm
with the BAM, we will notice that the latter has a simpler structure and, therefore,
this will be our candidate for an analog circuit implementation.

~-_ There is an analog circuit implementation for the BAM algorithm reported in
the litarature~{79), but i is a programmable (not adaptive) version of the theoret-
ical model. We will describe Ghis circuit later on in this Chapter. As far as circuit
implementations of a complete learning neural network are concerned, very little ma-
terial has been published up to date for analog realizations. There is one publication
of a complete adaptive neural network system and it is a mixed analog and digital
implementation without any permanent memory for the learned weights, i.e., if train-
ing stops the weight values vanish in about 300ms [80]. We will also describe this
contribution later on when considering learning circuits.

The core contribution of this Dissertation is the design, fabrication and test of a
fully analog adaptive neural network (a BAM) with on chip analog memory to retain
the learned weights for as long as power is supplied to the circuit. This implementa-
tion, as we will show later on in this Chapter, is based on T-mode (transconductance-
mode) circuit design techniques. The analog memory used is of the capacitive refresh-
ing type based on Analog-Digital- Analog conversions (see Chapter III, Section D.2.b).

In this Chapter we will first present the BAM algorithm as proposed by Kosko.
Then we will show a reported circuit implementation of this algorithm, but a pro-
grammable version, followed by how a T-mode implementation would be. Finally, we
will consider the learning issues by first presenting the learning circuit of a reported
example of a complete adaptive neural network working system, but without on chip
memory, and second presenting our own T-mode learning BAM with on chip dynamic
(refreshing) analog memory.
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Fig. 111. Architecture of BAM Algorithm

A. BAM Algorithm Description

A BAM {25, 26, 27) is a two layer neural network in which all neurons ¢ from layer
1 send their outputs to all neurons j at layer 2 through a synapse of weight wyj,
and all neurons j in layer 2 send their outputs to all neurons : in layer 1 through a
synapse that has the same weight w;;. There are no connections between neurons of
the same layers. Also, each neuron i in layer 1 may receive an external input [;, and
each neuron j in layer 2 another one of value J;. This architecture is schematically
depicted in Fig. 111. |

When Kosko proposed the BAM network [25, 26] he presented three different

versions,

o Discrete BAM, characterized by a set of discrete time difference equations [27],

M-
o =Y wifyly) + I i=1...N
j;l g +(4.1)

y;'c“ :Ewijfri(x?)'i"’is i=1...M v

i=1

where k are arbitrary time steps, f.;(-) and f,:(-) are arbitrary threshold func-
tions (monotonically increasing with a maximum and a minimum saturation
value foaz and fpin, respectively) with arbitrary threshold, I; and J; are ar-

bitrary inputs, and (w;;)vxa is an arbitrary but constant synaptic connection
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matrix. For any matrix (w;;)nxa this BAM will reach stable stationary states
in which it reverberates at pair of patterns {%,,¥5}

Continuous BAM, characterized by a set of continuous time differential equa-
tions [25, 26, 27),

= ezt o wifipd A L, =1 N
y; = =y + gwﬁfxﬁ(z;) +J;, 7=1,..M

-
where f,;(-) and f,i(-) are arbitrary threshold functions, o and v; are arbitrary
positive numbers, I; and J; are arbitrary external inputs, and (wi;)nxpm is an
arbitrary synaptic connection matrix that is allowed to change “slowly” in time.
For any matrix (w;)nxs this BAM will reach stable stationary states in which

it reverberates at pair of patterns {X,,¥,}-

Temporal Associative Memories (TAM), these are a special case of discrete
BAMs which have the property that in the steady state they reverberate at a
sequence of patterns [26].

All these associative memories (BAMs and TAMs) will “reverberate” at a certain

pair (or sequence) of stored patterns when the external inputs and/or initial conditions

represent parts of those stored patterns.

Since in this Dissertation we are interested in analog hardware implementations,

of the three types of associative memories presented by Kosko, only the continuous

BAM is important to us.

From now on we are going to make the assumption that the threshold functions

f2i() and f,;(*) are all equal for all neurons, and are going to be denoted by f(-).

Before going any further let us first consider a very special BAM that will help

us throw some light on the working mechanism of a BAM. This special case is N =
M=1 a.l‘ldI;_:ijU.

&= —az+wf(y) (4.3)

§ = -+ wflz)
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(a) (b)

Fig. 112. Phase Portrait of the 1 x 1 BAM: (a) w >0, (b) w < 0
In the steady state (¢ = § = 0) the system is described by,

w
' 3=;f(y)

W (4.4)
y= ;f(-"")

A phase portrait for this is shown in Fig. 112 for the two cases w > 0 and w < 0.
Note that there are three possible equilibrium points A, B and C. However, for B
and C to exist the following condition must be satisfied,

%’ F20) > 1 (4.5)

This condition is obtained by imposing that the slope of the curve § = 0 is greater
than the one of # = 0 at point A. Equation (4.5) implies that the value of the weight
has a lower limit in order to make B and C real equilibrium points. Note that if
points B and C exist then

w?

W

Y lpe

because the slope of curve § = 0 at B or C is less than that of curve £ = 0. In order

<1 (4.6)

to estimate the stability of the three equilibrium points, let us linearize equations
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(4.3) around an equilibrium point {x,,y,),

?
. : !
# = ~az + ulf(1) + [5e)r 1)

§ = —yy+ w[f(z.) + f(zo)(z — 2o)]

(4.7)

According to what we described in Chapter II, Section C.3, the stability of this second
order system can be established by examining the trace T and determinant A of the

matrix, ,
[ - wf (yo)] (4.8)
wf'(z,) —v
which are, '
=-a-y<0
A=ay- wzf’(za)f'(yo) (4'9)

fzo) = ') = f3
With reference to Fig. 54 we know that since T < 0 we will have a stable equilibrium
point unless A < 0, i.e., if

iny (4.10)
ay’? )

the equilibrium point is unstable. If equilibrium points B and C exist we know that
equilibrium point A is unstable, because for A, x, = y, = 0 and equation (4.10)
becomes equation (4.5). Also, since B and C exist, equation (4.10) is automatically
not satisfied for them because equation (4.6) holds. Therefore, if B and C exist, A is
unstable, while B and C are stable. If they do not exist then A is stable.

Assuming the weight w has a sufficiently large value for B and C to exist the
1 x 1 BAM is Equivalent to a 1-bit flip-flop. This is shown in Fig. 113 for the two
cases, w > 0 and w < 0. In both cases we can store only one pair of patierns (and
its complementary). Therefore,

=Y R fnar
for w > 0, we can store

rT=y = fmin
(4.11)
e fmnss Y= fm:’n
for w < 0, we can store :
’ zﬁfminsy zfma.'c
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Fig. 113. The 1 x 1 BAM Is Equivalent to a 1-Bit Flip-Fiop with (a) Inverting Am-
plifiers if w < 0, and with (b) Noninverting Amplifiers if w > 0

A general N x M BAM can be visualized as a generalized flip-flop in which we can
store several pair of patterns. As we will see later, in a general N x M BAM when we
store a certain pair of patterns we automatically are storing also its complementary.
In what follows of this Section we will first consider the stability characteristics of
the non-adaptive BAM, then present how to store patterns in it, followed by stability
considerations of the adaptive BAM and limits on the storage capacity.

1. Stability of Non-Adaptive BAM

The BAM (either discrete or continuous) can be considered a particular case of Hop-
field’s network. This can be visualized by making the two BAM layers to be a single
one, as is shown in: Fig. 114.

e Theorem: A BAM network is Liapunov-stable for any synaptic interconnection
matrix (wi;)Nxm-

¢ Proof: Since, as shown in Fig. 114, a BAM network is a special case of Hopfield
Network with zero diagonal elements and with a symmetric interconnection
matrix, and since a Hopfield network with these properties is Liapunov-stable
(see Chapter 111, Section A.1), it follows that the BAM network is also Liapunov-
stable.

2. BAM Encoding

Several encoding of pattern strategies are possible to be implemented in the BAM.
Here, when we say pattern encoding we are referring to a programmable version of
the BAM. The learning aspects will be covered later.
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Fig. 114. BAM Network Drawn As a Particular Case of Hopfield’s Network

We are going to present three different encoding or programming strategies [27]:

o Hebbian or Quter-Product Rule. Suppose we have P pair of patterns to be
stored in a BAM,

{Kh ﬁl}f’;l
Ai=(d,d,...dy) (4.12)
B, = (¥,8,...8)

where o} and b, take either the value frin or fmac of f(-) in equations (4.1)
and (4.2). The weights of the synaptic interconnection matrix are computed as

follows,
P
wi; =y ab (4.13)
i=1
- Or, in matrix form
P
w =Y ATB (4.14)
=1

If, in f(-), fmin < 0 and fraz > 0 the BAM is referred to as a bipolar BAM,
and the weights w;; can take positive or negative values. If, on the other hand,
fmaz > Fmin = 0 then the BAM is referred to as a binary BAM and the weights
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can only take positive or zero values. The fundamental consequence is that in a
bipolar BAM there are inhibitory and excitatory connections between neurons,
while in a bipolar BAM there are only excitatory connections. In general, a
bipolar BAM is able to converge faster to a stable state than the binary one,
and also is able to have more stable states than the binary one, i.e., a higher
storage capacity [26,27]. The T-mode circuit implementation that we are going
to propose later is of a bipolar BAM.

Boolean Outer-Product Law. Given the pair of patterns to be stored of equation
(4-12), the weight matrix is computed as follows,

P

w = PATE, (4.15)

=1

where @ denotes the boolean sum defined pointwise as,

wy; = maz{albl, a?b? .afbf] (4.16)

L R Snd B

Optimal Linear Associative Memory Matrix. The optimal linear associative
memory, studied by Wee (81, 82] and Kohonen [77], provides another BAM

connection matrix,
W= A"B
AT = {ATYAT|. .. |AElpun (4.17)
87 = [BYIB])... [Bflpxm
where the N x P matrix .A* denotes the pseudo-inverse of A. The pseudo-inverse
matrix can be defined in many ways. We shall say that A* is the pseudo-inverse

of A if and only if A* behaves as a left identity and right identity, and A*A
and AA" are symmetric,

AA"A = A
AAN = A
A A= (A A
AA* = (ALY

{4.18)

The recursive Greville algorithm, computationally equivalent to an appropriate
time-independent Kalman filter [83], provides an efficient method for computing
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pseudo-inverses.
By considering tha.t, | -_,
A1)
. N .J:\z K;J
. A;=ﬁ f'__‘ (4.19)
3
equation (4.17) can be rewritten, as equation (4.14), in the form
L - - o
w =3 A:B (4.20)

i=1

In the previous programming rules, except for the boolean outer-product law, specific
pair of patterns can be given different weight factors \; > 0. If XT denotes either AT
in equation (4.14) or A} in equation (4.20), and Y, denotes B;, then

w ='{j MXTY, '(4.21)
=1 .

This method can be used to strengthen pair of patterns that are more difficult to
retrieve [27, 84].

3. BAM Capacity

There is not an exact mathematical demonstration that puts a precise limit on the
capacity of a BAM. The question can be formulated as “how many minimums can be
sculpted in the Energy function?”

Empirically it has been proven that this limit is close to {NM )74 [84). Kosko
showed mathematically {26, 27] that for the Hebbian encoding rule and if the stored
patterns satisfy the continuity assumplion

1 1 -
7 H(AwAj) ~ 3 H(B:, B)) (4.22)

where H(X,Y) is the Hamming distance between patterns X and Y, then the maxi-
mum possible capacity of the BAM, P, satisfies .

P < min(N, M) | (4.23)
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His demonstration is as follows. o
Consider W given by equation (4.14), and assume an input vector I, so that its
most similar stored pattern is given by vector A,. Then,

= 2=T - P =+=T =
Iw= (IA,)B, +Y_(IA,)B
= nB,+ aB, :
Y | (4.24)
n= IK
2+=T
ag = IA
Since A, is the closest pattern to f, this implies that
n > Cigty (4.25)

Therefore, the right hand side of equation (4.24) can be viewed as a signal-noise
decomposition, in which pattern B, is favored with respect to the others. Even more,
the notse-coefficients ¢ will make c;ﬁ; to resembie ﬁ. as much as possible. Then,
after thresholding, W will resemble B,. Kosko argues that, since the maximum
possible number for n is N then P has to be less than N so that the noise term does
not obscure the signal term. The same reasoning is applied for the signal path from
layer 2 to layer 1, so that P has to be less than M. In conclusion, equation (4.23)

results.

4. Learning in Adaptive BAMs

The learning in an adaptive BAM is of the unsupervised type [25, 26, 27] "There are

four deterministic unsupervised learning laws [27, 85]:

¢ Hebbian Learning: the deterministic signal Hebbian learning law correlates local

neuronal signals,
Wi = —wij + f(2i}f(y;) (4.26)

where each term might have some additional dimensional scaling constant.

o Competitive Learning: the deterministic competitive learning law [86] modu-
lates the signal-synaptic difference f(z:) — w;; with the zero-one competitive
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signal A(y;),
| ;= h(y;)f (=) = ] (a21)
where, | a |
M) = Ty (4.28)

with large ¢ > 0, h(-) can approximate a binary win-loss indicator.

¢ Differential Hebbian Learning: the deterministic differential Hebbian learning
law [87] correlates signal velocities as well as neuronal signals,

Wi = —wi; + f(@) ;) + flz) fly;) (4.29)

where,
f@)=f(2)2, z=ziorz=y, (4.30)

o Differential Competitive Learning: the deterministic differential competitive
learning law [85] combines competitive and differential Hebbian learning,

Wi = f(y;)[f(2:) — wij) (4.31)

Differential competition means learn only if change. The signal velocity f(y;)
provides local reward-punish reinforcement.

Of these four learning rules the first one, Hebbian learning, is the simplest one to
be implemented in hardware and, therefore, this is the learning rule we will chose to
implement our adaptive BAM on Silicon.

Note that the four learning rules described above are of the deterministic type.
One can extend these learning rules to the stochastic type [27]. For example, the
Hebbian Learning rule in equation (4.26) can be extended to

thy = —wij + f(Zi) f(y;) + nij . (4.32)

where {n;;(t)} represents a zero-mean Gaussian white noise random process. This
stochasticism allows the introduction of annealing in the LTM (Long Term Memory)
of an adaptive BAM and, in general, of any adaptive neural network.
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o Theorem: The Hebbian adaptive BAM,

P == E wi; f(y5)

J-—l

yi=—y;i+ Z wuf(z,){ ; (4.33)

=l
iy = =i+ S 1)

is globally stable *.

¢ Proof: Consider the bounded Liapunov function,

-3 3 A s + z j £(0)6:d0:+

Y, (4.34)
+21f ['(€j)eide; + 22;21“’:,
= =] 3=

Taking time derivatives yields,

. N M
L= =YY [ (@) flyi)ywiszi+ (=) (i ywiigs + Flza)f ()] +

=i
+ ;1 fl(zdzid: + ,E F(yidvavi + g; wijthij
= - g f(=); [—za + Z_; wis f (y.-)] = ; F'{y5)¥s [ ~yi + ‘; wi; f (==)]
—)fiw (- + @) f () |
= —)Ef‘(x:)x - Z f’(y;)v, Zzwﬁ <0

i=1 =1 =1 j=1

(4.35)
Because the sigmoidal functions are monotonically increasing. Therefore, the
Liapunov function £ decreases along system trajectories until a steady state is
reached &; = yj; = wi; = 0, in which case L remains constant.

1Kosko [HT]bgrowdes a more general A)roof of this Theorem that proves global
stability for ian and Competltwe BAMs with STM expressions of the general
Cohen-Grossberg [88] form.
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Note that for the deterministic Hebbian learning rtle,

i (t) = —wii{t) + =) (v3(2)) (4.36)

we can write its solution as [27],

wi(®) = w0 + [ S () flwr)e " dr (4.37)

The exponential weight solution of equation (4.37) induces a recency effect on the un-
supervised learning. The recent experience, inside the integral term, is being favored,
while the initial condition is being forgotten due to the factor e~*.

So far we have described theoretical aspects related to an adaptive BAM. Now

it is time to turn our attention to Silicon implementation issues of this algorithm.

B. A Reported Implementation Example

Here we are going to present a reported example of a complete BAM system hard-
ware analog implementation without learning, i.e., a programmable BAM [79]. The
hardest problem when implementing programmable analog neural network circuits is
how to store all the analog weights

wi; = EP; aib (4.38)
t=1

Note, however, that in a programmable system af-bf,- is either —1 or +1 (assuming a
normalized bipolar BAM). Then the values of w;; are discretized and belong to the
set {—P,—P+1,...—1,0,+1,... P — 1, P}. In a hardware implementation we can
therefore split each synaptic connection of value w;; into P parallel synapses each
having a weight of —1 or +1 which can be stored in a digitai flip-flop cell. This is
illustrated in Fig. 115. If we do this we would need to implement 2 x N x M x P
synapses in the circuit. However, we can drastically reduce the number of synapses
(specially if M and N are large) by considering that the input to a neuron, say neuron

i in layer 1, coming from synaptic interconnections of all neurons j in layer 2 can be
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Fig. 115. Transformation of a Synapse with Discrete Analog Weight into a Set of
Parallel Synapses with Digital Weights

expressed as,

M MoP
S wiyi= Yoy aib

i=1. J=1 =1

P M P
= YaY yph=3 alu; (4.39)
=1 =1 i=1
M
u = Eyjb}
i=1

and the synaptic connections from neurons j in layer 2 to neuron : in layer 1 can
be represented as shown in Fig. 116. This will produce a total number of synaptic
interconnections in the BAM of 2P(N + M). Each synapse still has a digital weight
(=1 or +1).

The circuit implementation is done such that each synapse has a voltage as
input and a current as output. Each neuron is made by using a pair of simple MOS
inverters. It receives a positive or negative input current coming from the synapses.
These currents are integrated over time by the interconnect capacitance, thus the
voltage on the capacitance represents activation. Neurons switch to the +1 state
(or the —1 state) when the activation voltage exceeds {or falls below) the inverters
threshold, and remain in the same state when the net input current is zero.

The circuit for the synapse is shown in Fig. 117. The voltages a and & are the two
complementary outputs of the two inverters that implement a neuron. They control
switches M .S3 — M 56 so that the input voltages to transistors M1 and M2 are either
Vpp or V. By matching M8 with M1 and M2, Vj, is the gate voltage that will make
M1 or M2 drive a current 2J;. The flip-flop of the synapse controls switches MS1
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Fig. 116. Modified Synaptic Interconnections from All Neurons in Layer 2 to One

Neuron in Layer 1

Vop
\ 21,
D™ D
M, :]b—c- 2,

Vg5 .-

Fig. 117. Synapse Circuit; The Part Comprised by Broken Lines Only Needs to Be
Implemented Once per Neuron
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Fig. 118. Circuit Implementation of Summing Circuits and the Following Synaptic
Connection; The Part Comprised by Broken Lines Only Needs to Be Imple-
mented Once per Summing Circuit

and M S2 so that only one of them will be on. Note that if ¢ = 1, M1 drives a current
21 and M2 drives a null current. The output current of the synapse is given by,

T = acl (4.40)

where a,c € {~1,+1}.

The implementation of the summing circuit together with one of the synapses
connected to its output is shown in Fig. 118. The sum of all synaptic currents I into
the summer plus the bias current Iy, is mirrored from M9 to M1. If ¢ = 1 then the
synapse output current is I.. An identical circuit (M9’ and M10') is fed with —I,.
so that the current through M2 is Iy, — I, and, if ¢ = —1, the output current of the
synapse will be —1I,.

A complete circuit representation is depicted in Fig. 119 for a 3 x 3 BAM.



summer synapse neuron

Fig. 119. Circuit Representation of 3 x 3 BAM
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.C. T-Mode Implementation; The Modular Approach

An analog circuit implementation of a neural network algorithm in general, and of the
BAM in particular, consists of building a circuit that obeys the differential equations
that characterizes that algorithm. In the case of the continuous BAM these differential
equations are (see équation (4.2))

M .- . .
di= et L wif)+ L, ¢=1,..N

's N :
g = —yy+ Y wif(e) + ;=1 M

=1

(4.41)

Using the same T-mode circuit design technique that we have used already to imple-
ment Hopfield's network in Chapter I11 (Section B), the set of equations (4.41) can
be simulated by using the circuit shown in Fig. 120. As happened with the T-mode
Hopfield implementation, here also the circuit of Fig. 120 does not realize exactly
equations (4.41), but

M S
Czt; = g(z,')_«}-.‘:_f_.' #+ Z !b.;jy_i_,_ t:= 1,...N ¢
S~ 4.42)
Cy; =g(y;) + J; + Z;w‘-,-:c,-, i=L... M
=
where g(-) is the inverse of a sigmoidal function, and is implemented by the nonlinear
resistor in Fig. 120.

The global stability of this T-mode circuit is proven because it is a particular
case of Hopfield’s algorithm (see Section A) and stability of T-mode Hopfield circuits
was proven in Chapter III by showing that they were a particular case of a second
order constrained optimization network (see Chapter III, Section C).

The circuit implementation for each of the components in Fig. 120 is exactly the
same that for those in Hopfield’s T-mode circuit (see Chapter III, Section B).

In the BAM case, the circuit of Fig. 120 can also be split into several subcircuits
each one of them on a different chip, as shown in Fig. 121 (for the particular case of
N = M =10}, so that modularity is accomplished.
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Fig. 120. T-Mode Circuit Implementation of BAM Algorithm
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Fig. 121. Ilustration of Modular Capability of T-Mode Circuit BAM Implementation
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Fig. 122. Charge Pumping Circuit for Weight Modification

D. The Learning Circuit

In what remains of this Chapter we will describe circuit aspects related to the imple-
mentation on analog (or digital/analog) hardware of learning rules.

For this, we will first describe briefly a learning circuit that has been recently
proposed in the literature as part of a complete and working neural network mixed
analog/digital circuit. After this we will present our proposed T-mode circuit imple-
mentation of a learning circuit applied to the T-mode BAM circuit described in the

previous Section.

1. A Mixed Analog/Digital Learning Circuit for Neural Networks

The authors of this learning neural network chip [80] use the circuit shown in Fig. 122
for increasing or decreasing the charge on a capacitor. The resting voltage of signals
Increase and Decrease in Fig. 122 is V,,. Each time a pulse is applied to Increase the
rising edge will make node voltage V, to try to follow Increase until diode D2 turns
on, delivering a positive charge to C,, that depends on the ratio between C; and C,.
The falling edge in Increase will have no effect on the charge of capacitor Cy. It will
only turn on diode D1 if V, tries to go below Vss. If a pulse is applied to Decrease,
during the rising edge V; tries to follow the pulse and will turn on D4 making voltage
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Fig. 123. Synaptic Circuitry

Vi very close to Vpp. During the falling edge at Decrease D3 will turn on making
C. to loose a packet of charge that depends on the ratio between C,, and C;. The
synaptic circuitry using this weight modification circuit is shown in Fig. 123. If the
state of neuron i is of f then z; is low, which makes switches MS1 and M52 to be
off and MS3 to be on. Therefore, the output current I;; of the synapse ie Iy which
is determined by the bias voltage V;. If z; is high then the output current Ij; will
depend on the weight stored in capacitors Cy; and Cyu2. By applying reset pulses to
Ry and R;, C,; and Cy2 will be completely discharged so that the gate voltage at
M1 is V; and the gate voltage at M2 is Vpp. f M1, M2 and M3 are matched, the
output current in this case is I, which corresponds to an equivalent output of zero. If
now pulses are applied to the input I (Increase) C, will be progressively discharged
and M2 will drive more and more current so that the output current of synapse I;;
will be greater than I,, which corresponds to an equivalent positive output. Ii, on
the other hand, pulses were applied to input D (Decrease) Cy, will be progressively
charged and M1 will drive less and less current so that the output current I; will
be less than I, which corresponds to an equivaleat negative output. The authors
include this synaptic circuit in a complete neural network that uses mixed analog and
digital circuits. Using a 1.0um, double polysilicon, double metal process they were
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Fig. 124. Bidirectional Synapse of T-Mode BAM

able to put a network with 10 synapses in a 13 x 13mm? die housed in a 281-pin
ceramic PGA package. However, their chip did not include any type of permanent
weight memory. The leatned voltages in capacitors Cy1 and Clz in each synapse will
vanish after around 300ms.

2. T-Mode Learning Circuit Implementation

In the T-mode BAM circuit shown in Figs. 120 and 121 each bidirectional synapse
is made of two transconductance amplifiers or multipliers as shown in Fig. 124. In
order to include the Hebbian learning law of equation {4.26), and since z; represents
the output of neuron ¢ in layer 1 and y; the one of neuron j in layer 2, we need to

implement the following differential equation for each synapse,
dJ.'J' = =—t; + xy; (4.43)

This can be accomplished by modifying the circuit in Fig. 124 into the one shown in
Fig. 125. This circuit implements the differential equation,

thb.'_,‘ = —%w,—,— + Kz.-y_,- (444)
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where K is the gain of multiplier M3. Note that if vz is the acceptable linear range
of multipliers M1 and M2 then z;, y; and w;; have to be within this linear range,

l2i] € vp, ;] € vy fwygl S (4.45)

For z; and y; this is made sure by the nonlinear resistors of the neurons. But for
w;; the learning circuit itself has to be able to satisfy this restriction. If 1, is the
maximum and minimum current that can be provided by M3 (which corresponds
to z; and y; equal to +vy) then the maximum and minimum voltages that can be
developed at w;; are £81,,. Therefore, if we impose

|BL.| = v (4.46)

we will satisfy the third condition in equation (4.45).

On the other hand, for a proper learning operation we need to assure that the
time constant associated to the learning equation SC,, is much greater than the
time constant associated to the STM (Short Term Memory) operation. This means
that the resistance 8 has to be made very large and this will imply that I,, for
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Fig. 126. Circuit Implementation of Resistor 8 in Fig. 125

multiplier M3 has to be made very small in order for equation (4.46) to hold. A
circuit implementation for resistor 8 is given in Fig. 126. Transistor M1 acts as a
current source whose value is adjusted by V5. The differential amplifier will make that
transistor M2 drives the same current that M1 does, and will assure that the quiescent
voltage at the drains of M1 and M2 is ground. The parallel connection of the source
to drain impedances of M1 and M2 will constitute the simulated resistance 8. Its
value is dependent on the currents through M1 and M2 and is therefore adjustable
through V. .

The design of this learning circuit has to be done with great care. The reason
is that one wants to make 3 as large as possible and therefore will make transistors
M1 and M2 in Fig. 126 to operate very deep in weak inversion. The problem with
MOS transistors in very deep weak inversion is that mismatch effects between them
are accentuated. On the other hand, voltage V will be unique for all synapses on a
chip. This means that the mismatches between the 3 resistance of each synapse will
not be corrected through separate Vs control voltages for each synapse.

Once the learning or training phase has been accomplished, the learned weights
are refreshed using the scheme presented in Chapter 1II, Section D.2c, based on an
analog to digital to analog conversion. The complete synaptic circuit, including the
refreshing circuit, is shown in Fig. 127. Signal ¢ switches capacitor C,, to either the
learning or the refreshing circuit. Each synapse has two D-flip-flops that form part
of a long chain of D-flip-flops in the chip, made up by the series connection of the
two flip-flops of each synapse in the chip. In this chain, which is a closed one, there
is only a single “1” circulating in it. This means that only one synapse at a time is
being refreshed by first opening the switches MS1 and M S2 and sending the voltage
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Fig. 127. Complete Synaptic Circuit for T-Mode BAM
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at capacitor C, to the ADA (Analog-Digital-Analog) converter (see Fig. 108) and
by second opening switch M53 so that the output voltage of the ADA is stored in
C.. There is only one ADA converter per chip. Switch transistor MS1 is included
so that the charge extracted from C,, due to clock feedthrough when opening M 51

is recovered when closing switch M .S3 due to the same effect.

E. Conclusions

In this Chapter we have presented the issues to be considered when implementing
analog hardware circuits for learning neural networks. As & typical example we have
carried through the Chapter the BAM algorithm which is simple enough for a first
successful circuit realization. : :

We have first described the theoretical aspects related to the BAM algorithm.
We have presented an already reported circuit realization of a programmable version
of the BAM algorithm. We have presented a novel T-mode circuit realization that
will allow modularity in the system implementation. Finally, we have considered
the issues related to the circuit implementation of learning neural networks by, first
giving an example reported recently in the literature, and second by proposing our
own T-mode circuit realization of a Hebbian learning BAM with on-chip refreshing
permanent analog memory.

Now we are ready to examine the experimental results of this research work,

which will be explained along the next Chapter.
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CHAPTER V

EXPERIMENTAL RESULTS
This Chapter constitutes the core of the contributions of this Dissertation. Here we
are going to demonstrate experimentally that fully analog CMOS implementations of
programmable and learning neural network systems are viable.

We have divided this Chapter into two parts. The first part covers the results of
several programmable neural network systems. In this part we characterize the STM
(Short Term Memory) of these programmable systems. This STM is the same that
we will use later, in the second part, for the learning and adaptive systems.

The chips that were fabricated in order to test the STM performance of pro-
grammable systems were meant for modular BAM networks. However, as we will see,
we could use the same chips to build also Hopfield networks, winner-take-all networks,
simplified Grossberg networks, moderate precision optimization networks, and even
oscillatory Hopfield and BAM networks by externally adding the oscillatory neurons.

In the second part of this Chapter a chip that implements an adaptive BAM
will be shown. Its STM part is the same than that used for the programmable BAM
shown in the first part. The difference now is that instead of connecting the weight
control voltage of each synapse to an external voltage source, the synapses have an
additional circuit for developing their weight values during a training process, as well
as a dynamic refreshing circuit to keep the learned weight.

After characterizing the refreshing and learning synaptic circuits we will show
results of the full BAM working as an adaptive associative memory.

Later on, in the next Chapter, we will present some ideas that we have developed
during this research in order to suggest further improvements for adaptive neural

network systems.

A. Programmable Networks

In this Section we will present results concerning programmable neural networks.
Here, by programmable we understand that the control nodes for the synaptic weights
are connected to an external pin of the chip. This implies that for each synapse in
the chip there is a pin to adjust its weight value with an external voltage source.
This strategy will of course limit the number of synapses that can be put into one
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chip, but will allow us to fully test the STM section of these systems. On the other
hand, thanks to the modular capability of the T-mode circuit design technique that
we are using we will be able to assemble several chips and make reasonable size neural

network systems.

1. Programmable BAMs

A circuit diagram of a T-mode BAM is shown in Fig. 120 in Chapter IV. We de-
signed four different chips for implementing this circuit. One chip contains the cur-
rent sources that provide the external inputs to the two BAM layers. Another chip
contains the nonlinear resistors that are used for the neurons. The other two chips
are two different circuit implementations for the synaptic matrices. One of them uses
transconductance multipliers for the synapses, as was shown in Fig. 93 in Chapter III.
The other one uses, instead of multipliers, simple OTAs with some surrounding cir-
cuitry that makes possible to change the sign of its transconductance, so that positive
and negative weights can be programmed into each synapse.

Let us first characterize independently each of the components in these chips and
then build with them some neural network systems.

a. Component Characterization

i. Input Current Sources

The chip with the input current sources contains 18 of them. Each current source is
made with an OTA and some additional circuitry as shown in Fig. 128, This circuit
behaves like an OTA with input terminals V;* and GND, output terminal I,,;, and
bias terminal Vj;,. The power supply is set to Vpp = 48V, Vss = —5V. I Viiq, s
negative (0 > Viiae > Vss) transistors M1, M3 and M5 are ON, while M2, M4 and
M6 are OFF. This will connect the external Vi;,, input directly to the bias terminal
of the internal OTA, the external GND terminal to the OTA’s negative input, and
the external V;* terminal to the OTA’s positive input. This will make the output
current I, of the circuit and its input voltage V;* to be related through a positive
transconductance gain g,, > 0. The value of this g,, is adjustable through the value of
Viiss- The range of adjustment of VQM is approximately between —'5_V and —2V. The
minimum g,, is obtained for Viias = —5V (gm = 0), and the maximum for Viias = =2V
{gm = 10™*mhos). |
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Fig. 128. Circuit Diagram of Positive/Negative Current Source



148

If Viias is positive (0 < Vo, < Vpp) transistors M1, M3 and M5 are OFF,
while M2, M4 and M6 are ON. This will connect V;* to the negative internal OTA’s
input, and GN D to the positive one, making I..: and V;* to be related now through
a negative transconductance gain, gm < 0. Now we need to change the positive Vs,
value to a negative one in the range from ~5V to —2V so that the internal OTA
is properly biased. This is accomplished by transistors M7 and M8. The drawback
of this simple circuit is that now the internal bias voltage of the OTA will never
reach —5V. This means that for negative g, s we will not be able to reach ¢, = 0.
Therefore, for Viiss = +5V, gm will not be zero.

A chip for these positive/negative OTAs was fabricated in a 2um double polysil-
icon, double metal CMOS process (MOSIS). We put in a single chip 18 of these
positive/negative OTAs in the way shown in Fig. 129, for use as current sources in
the forthcoming neural network systems. Each OTA in Fig. 129 has an independent.
Vbias terminal.

Fig. 130 shows the DC transfer characteristics of I versus Vi+ for different
values of Vjiza. The voltages given to Vi, were —2.50V, —3.00V, —3.25V, —3.50V,
—3.75V and —4.00V for the curves in the first/third quadrants, and +4.00V, +3.75V,
+3.50V, +3.25V and +2.75V for the curves in the second/fourth quadrants. Note
that for Vii., = —4.00V the output current is very close to zero, while for Viias =
+4.00V the transfer curve is still far from the zero axis. There is no appreciable
difference in the curves for Viise = +4.00V and Vi, = +5.00V.

The output current was measured by loading the OTA with a 10K} resistor
and looking at the voltage drop at this resistor. The dependence of gm with the bias
voltage is shown in Fig. 131 for negative Vi, voltages, and in Fig. 132 for positive Vbiae
voltages. Fig. 133 shows the measured relationship between the output impedance
of the OTA and the bias voltage for negative Vjia, values, while Fig. 134 shows it for
positive values.

ii. Nonlinear Resistors .
The nonlinear resistors used are of the type shown in Fig. 95 in Cha.pt.er IIL. The
complete circuit diagram of the fabricated nonlinear resistors is depicied in Fig. 135.
Nine of these nonlinear resistors were put into a single chip in the way shown
in Fig. 136. In order to measure the DC transfer characteristics of these nonlinear
resistors the set up of Fig. 137 was used. The bias voltages were kept constant at
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Fig. 129. Configuration of Input Current Sources Chip
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0.00000us 500.000us

Ch. 1

= 250.0 mVolts/div Offset = 0.000 Volts
Ch, 2 = 2500 mVolts/div Offset = 0.000 Volts
Timebase = 100 ps/div Delay = 0.00000 s

Fig. 130. DC Transfer Curves of Positive/Negative OTAs for Different Vi,,, Voltages
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Fig. 135. Complete Circuit Diagram of Fabricated Nonlinear Resistors
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Fig. 137. Set Up Used for Nonlinear Resistors DC Characterization
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-500.000us 0.00000us 500.000us

Ch. 1 5000 mVolts/div  Offset

- = 0.000 Volts
Ch. 2 = 500.0 mVolts/div Offset = 0000 Volis
Timebase = 100 ps/div Delay = 0.00000 $

Fig. 138. Measured V; versus V; Transfer Curves for Different Values of E* and E-

Vin = —4.00V and V;, = +4.00V. The limit voltage E* was changed between 0.10V
and 1.00V, while E~ was changed between —0.10V and —1.00V. When the current
through the nonlinear resistor is zero we will have V; = V;. When the nonlinear
resistor starts to limit at E* or E~, V; will tend to remain at a constant voltage. In
this situation the nonlinear resistor behaves as a voltage source of value E* or E-.
The output impedance of this voltage source can be measured by looking at the slope
m = AV /AV, of a V; versus ¥} representation,

_ AV, _ R, o om
=V " E R = BB (5.1)

A measured V, versus V; family of transfer curves is. shown in Fig. 138. For the part
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of the curves in the first quadrant E* took the values of +1.00V (top trace), +0.75V/,
+0.50V, +0.30V and +0.10V. For the part of the curves in the third quadrant
E~ took the values —1.00V (bottom trace), —0.75V, —0.50V, —0.30V and —0.10V.
When the nonlinear resistor acts as a voltage limiter of value E¥ or E~ its output
impedance can be obtained by equation (5.1). The slope m, as can be seen in Fig. 138,
is independent on the value of E* and E~ and is approximately the same for both the
negative and positive sides. Its value is m == 1/3. Therefore, according to equation
(5.1) and since R = 1009 (see Fig. 137) we have an output impedance of

R, = 250 o (5.2)

Note in Fig. 138 that for negative V; voltages (current coming out of the nonlinear
resistor) and very negative V; values the slope changes again to approximately unity.
This means that the nonlinear resistor behaves as a current source or, stated in
a different way, there is a maximum value of the current it can sink (or supply)
when it is voltage limiting. In Fig. 138 we can only see the effect of the maximum
negative current for very negativé Vi values, but there is also a maximum positive
current for very positive V] values. From Fig. 138 we can determine the maximum
negative current the nonlinear resistor can provide (when Vi, = —4.00V) by looking
at the breakpoint of the curve E~ = —0.10V. Note that this breakpoint occurs when
V; = —1.20V. The current the nonlinear resistor is sourcing is given by

=2 %

moe =y = 8:80mA - (53)

For positive V; values (current going into the nonlinear resistor) we cannot determine
the maximum positive current the nonlinear resistor can sink, but we can give a lower
bound for it by looking at the curve for E* = +0.10V. The maximum V; value we

have for this curve is V4 = 1.80V, which corresponds to a current of
_ G-
= RTLR

Therefore, we can conclude that the circuit of Fig. 135 when biased with W, =
—4.00V and Vi, = +4.00V can provide a maximum negative current of 8.80mA and

I = 12.8mA T (5.4)

a maximum positive current of, at least, 12.8mA. .
For neural network systems of moderate size one has not to worry about this
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maximum current of the nonlinear resistors. However, for very large systems one may
run into current values of this order of magnitude. If, at this point, power dissipation

problems are solved one still has to take into account this current saturation effect.

iii. Synaptic Matrix with OTAs

Using the positive/negative OTA of Fig. 128 we put into a single chip an array
of 5 x 5 synaptic connections as shown in Fig. 139. Each synapse is formed by
a pair of positive/negative OTAs that share the same bias connection. This bias
connection goes to an external pin for each synapse, so that its value can be adjusted
independently for each synapse by using an additional external voltage source per
synapse 1. Incidentally, note that each bidirectional synaptic connection is a gyrator
[44] of adjustable gyration conductance. The area of each OTA was 25 x 15um?®. The
GND terminal is shared by all the 50 positive/negative OTAs in the chip.

iv. Synaptic Matrix with Multipliers

The fact of replacing the Positive/Negative OTAs with multipliers not only wiil
safe area but also will provide a continuous control from positive to negative transcon-
ductance values. This feature is absolutely necessary for adaptive systems to be stable.

The multiplier we used was already presented in Fig. 93 in Chapter III. The actual
schematic with transistor geometry factors is depicted in Fig. 140. Note that the
PMOS current mirror is unbalanced. This will introduce some degree of nonlinearity
in the multiplier transfer curves, but will compensate for offset at the output. In
neural networks a certain nonlinearity in the synapses can be tolerated, however a too
large systematic (non-random) offset may kill the performance of the whole system.
Also note in Fig. 140 that we have two different ground levels in the multipliers, one
for the bottom differential pair and another one for the two top differential pairs.
This will allow to maximize the linear range of the inputs X and ¥ without including
additional voltage level shifters, folded structures [89] or current mirrors [4]. Each
multiplier has an area of 50 x 50um?.

A chip containing a 5 x 5 synaptic BAM matrix with these multipliers was
fabricated in a 3pym double polysilicon, double metal process (MOSIS), using a
2200 x 2200um?® die. The ::hip floor plan is depicted in Fig. 141. The Vi, ter-

'In practice we had an external board with up to 40 adjustable resistors to provide
40 independent voltage bias values.
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Fig. 139. Chip Floor Plan of Synaptic BAM Matrix Using Positive/Negative OTAs



160

Fig. 140. Actual Schematic of Fabricated Multipliers

minal (see Fig. 140) is shared by all the multipliers in the chip, as well as the GN Dy,
and GN Dystom terminals. The weight (transconductance gain) is adjusted through
terminal Y of the multipliers. The two multipliers in each bidirectional synaptic
connection share their Y inputs, which is also connected to an external pin, one
per bidirectional synapse, so that the weight can be adjusted independently for each
synapse through a separate external weight voltage. As can be seen in Fig. 141 there
are always five multipliers sharing their output nodes. Therefore, in order to mea-
sure the DC characteristics of the multipliers we connected five of them in parallel as
shown in Fig. 142. The optimum ground values for a maximum linear range in the

multipliers were found to be
GNDuy = —1.00V, GNDigom = —2.00V (5.5)

These values are not very critical. This is why we could use integer voltage values.
The five multipliers were loaded with a 20K} resistor in order to transform their
output current into a voltage. The DC transfer characteristics V,,: versus Vi, with
w as a parameter were measured for three different values of Viie.. In Fig. 143 this
is shown for Vi, = —3.77V, in Fig. 144 for Vi, = —3.89V and in Fig. 145 for
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Fig. 142. Experimental Set Up for Measurement of DC Characteristics of the Parallel
Connection of Five Multipliers

Viies = —4.00V 2. Note the high degree of nonlinearity in these transfer curves,
specially for those curves with weight value w close to =200V {GN Dyostom ). This is
primarily due to the unbalanced PMOS current mirror in Fig. 140. The dependence of
gm of one multiplier as a function of the weight w for the three different Vsia, voltages
is shown in Fig. 146. The output impedance of each multiplier only depends on Viia,.
It does not depend on the weight w or input voltage Vi, as long as all transistors are
operating in saturation. The output impedance R, of one multiplier as a function of
Vhins 18 depicted in Fig. 147.

b. Associative Memory Implementation Examples

Here we are going to show the results obtained when interconnecting the positive [/ne-
gative OTAs chip, the nonlinear resistors chip, the positive/negative synaptic matrix
chip, and the multipliers synaptic matrix chip to build a programmable BAM network.

i. 5x5BAMs
We built two different 5 x 5 BAM networks depending on whether we used posi-
tive/negative OTAs of transconductance multipliers for the synaptic gyrator matrix.

ZNote that for the most positive input (X in Fig. 140) and the most positive weight
gY in Fig. 140) the output current is negative instead of positive. This is because
or the multipliers synaptic matrix chip all the Y terminals of the multipliers were
connected together instead of the GN Dyyeom terminals. For this chip this does not
have any further effect, except that it was more convenient for layout issues. However,
when using this multiplier in a learning BAM we cannot interchange arbitrarily Y
and GN Dyoetom any more. : '
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Fig. 148. Experimental Set Up for Measuring the Transient Responses in a 5 x 5 BAM

i.1. Positive/Negative OTA Synaptic Matrix

First we tested a 5 x 5 BAM using the Positive/Negative OTA synaptic matrix
chip. The main concern in this case was to make sure that the whole T-mode idea
did work properly. The advantage of the positive/negative OTAs with respect to the
multipliers is their better linearity properties.

The circuit was connected as was shown in Fig. 120 in Chapter IV using the chip
of the current sources, the chip of the nonlinear resistors and the chip of the 5 x 5
positive/negative OTA synaptic matrix. Some extra awitches were added externally,
as is shown in Fig. 148, in order to set initial conditions and monitor the transient
responses of the node voltages (which are the neuron outputs). We stored the two pair
of patterns shown in Fig. 149 into the BAM of Fig. 148. According to the Hebbian
programming rule of equation (4.13) the resulting normalized weight matrix is given
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Pattern A Pattern B
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Fig. 149. Two Pair of Patterns to Be Stored into a 5 x 5§ BAM

by,
-2 0 0 2 0
0 =2 2 o0 2
-2 0 0 2 o0 (5.6)
2 0 0 -2 0
0 2 -2 0 -2

With reference to Fig. 130, a normalized weight value of ‘2’ corresponds to a bias
voltage of —3.50V, a normalized weight of value *-2’ to a bias voltage of —3.75V,
and a normalized weight value of ‘0’ to a bias voltage of —5.00V. The nonlinear
resistors were biased so that E* = 1.00V and E~ = —1.00V (see Fig. 135). Once the
two patterns were stored by biasing properly each synapse we set the input current
sources to provide the input pattern A of Fig. 149. The output voltages {z;} and
{y;} converged in about 3us to the correct output pattern A. The transient response
for {z;} and {y;} is shown in the upper half of Fig. 150 while the lower half shows
the Voniror signal that sets or releases the initial conditions.

In order to make sure that the equilibrium state to which the BAM has con-
verged is really stable and is not forced by the input current sources, we disconnected
these input current sources (while V.oniror remained high) and verified that the out-
put voltages {z,} and {y;} did not change. From now on, in all experimental results
that remain in this Chapter, whenever we say that the network converged to a cer-
tain pattern we mean also that we checked that it remained at this pattern when
disconnecting the input current sources.

Since we are using the Hebbian programming rule of equation (4.13) it is obvious
that by storing a certain pattern we are automatically storing also its complementary.
Therefore, if we stored patterns A and B of Fig. 149 we will also have patterns 4 and
B shown in Fig. 151. In Fig. 152 we show the convergence of the outputs to pattern
A when the input current sources were set to pattern A. This convergence needed
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Fig. 150. Convergence to Pattern A When the Input Is Pattertn A in BAM with
Positive/Negative OTA Synaptic Matrix
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Fig. 151. Complementary Patterns Also Stored in the 5 x 3 BAM
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Fig. 152. Convergence to Pattern A When the Input Is Pattemn A in BAM with
Positive/Negative OTA Synaptic Matrix

only 2us. If the inputs were set to pattern B the outputs converged to pattern B in
2.Tus, as is shown in Fig. 153. When connecting the inputs to pattern B the outputs
converged to pattern B in 1.4ps, as is shown in Fig. 154. And finally, if no inputs
were given, the BAM converged to pattern B whenever the initial conditions were

released. However, in this case il needed 16us to converge, as is shown in Fig. 155.

1.2. Multiplier Synaptic Matrix
The final objective is to use a synaptic matrix with the multipliers of Fig. 140 instead
of the positive/negative OTAs. The reason is that the multipliers provide continuous

control from positive to negative transconductances (i.e., weights), which is necessary
for learning neural networks. Previously we tested the BAM using positive/negative
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Fig. 153. Convergence to Pattern B When the Input Is Pattern B in BAM with
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Fig. 154. Convergence to Patten B When the Input Is Pattern B in BAM with
Positive/Negative OTA Synaptic Matrix
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Positive/Negative OTA Synaptic Matrix
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OTAs for the synapses but with the only purpose of making sure that the whole
T-mode idea worked properly. From now on we will use only multipliers for the
synapses. Now we are going to test the inherent properties of the T-mode BAM such
as capacity and modularity.

Two Patterns

First we stored the same two patterns shown in Fig. 149. Obviously, the comple-
mentary patterns, shown in Fig. 151, will also be stored automatically. We checked
the performance of this 5 x 5 BAM for two different valves of Viis,. First for
Viias = —4.00V (see Fig. 143) and then for Viio, = —=3.77V (see Fig. 143}. The non-
linear resistors were biased so that E* = —0.5V and E~ = —15V. The normalized
weight matrix for these two patterns was given in equation (5.6). The correspond-
ing weight voltages (terminal Y in Fig. 140) that we used for biasing the synaptic
multipliers were (see Figs. 143 and 145),

Y= '—2.8V fOl‘ wy; = +2 .

+
Y =20V for wi=0 § (8.7)
Y =-12V for wy; = -2

For Vi, = —4.00V the transient responses are shown in Figs. 156 to 160. Fig. 156
shows the convergence to patterns A when the input is A in 2.8us. Fig. 157 shows
the convergence to A with input A in 1.7us. Fig. 158 shows the convergence to B
with input B in 2.2us. Fig. 159 shows the convergence to B with input B in 1.4us.
Fig. 160 shows the convergence to B without any inputs in 130us.

The bias voltage was changed now from —4.00V to —3.77V and everything else
was left the same.  Fig. 161 shows the convergence to A with input A in 1.6ps.
Fig. 162 shows the convergence to A with input A in 1.1ps. Fig. 163 shows the
convergence to B with input B in 1.3us. Fig. 164 shows the convergence to B with
input B in 0.6us. Fig. 165 shows the convergence to B without any inputs in 1.6us.

Three Patterns
It was empirically found that the capacity of a BAM is close to (NM)'/¢ [84],
although the capacity depends on the patterns themselves [27]. In our case N =
M = 5. Therefore, a capacity of 2 or 3 is expected. We chose the patterns shown in
Fig. 166 to test if the capacity of our BAM could reach the number 3. The normalized
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Fig. 156. Convergence to Pattem A When the Input Is Pattern A in BAM with
Multiplier Synaptic Matrix and Vp;,, = —4.00V for 2 Stored Patterns
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Fig. 157. Convergence to Pattern A When the Input Is Patern A in BAM with
Multiplier Synaptic Matrix and Ve = —4.00V for 2 Stored Patterns
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Fig. 138. Convergence to Pattern B When the Input Is Pattern B in BAM with
Multiplier Synaptic Matrix and Vj,,, = —4.00V for 2 Stored Patterns
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Fig. 159. Convergence to Pattern B When the Input Is Pattern B in BAM with
Multiplier Synaptic Matrix and Vy,, = —4.00V for 2 Stored Patterns
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Fig. 160. Convergence to Pattern B without Any Inputs in BAM with Multiplier
Synaptic Matrix and Vi, = —4.00V for 2 Stored Patterns
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Fig. 161. Convergence to Pattem A When the Input Is Pattern A in BAM with
Multiplier Synaptic Matrix and Vj;,, = —3.77V for 2 Stored Patterns
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Fig. 162. Convergence to Pattern A When the Input Is Pattem A in BAM with
Multiplier Synaptic Matrix and Vp;,, = —3.77V for 2 Stored Patterns
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Fig. 163. Convergence to Pattern B When the Input Is Pattem B in BAM with
Multiplier Synaptic Matrix and Vp,, = —3.77V for 2 Stored Patterns
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Fig. 164. Convergence to Pattern B When the Input Is Pattern B in BAM with
Multiplier Synaptic Matrix and Ve = —3.77V for 2 Stored Patterns
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Fig. 165.Convergence to Pattern B without Any Inputs in BAM with Multiplier
Synaptic Matrix and Vi, = =3.77V for 2 Stored Patterns
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Fig. 166. Three Pair of Patterns (and Their Complementaries) to Be Stored in the

5 X35 BAM

synaptic weight matrix is given by

1 1 1 1
-3 11 1
1 1 1 1
1 1 -3 1
1 -3 1 -3

(5.8)

We used in this case a multiplier bias voltage of V, = —3.77V. To program the weights

the Y terminal of the multipliers (see Fig. 140) was connected to the voltages,

Y =22V for w;=+1
Y = —1.2V fOl‘ wi; = —3

(5.9)

Fig. 167 shows the convergence to pattern A with input A in 1.6us. Fig. 168 shows

the convergence to pattern A with input A in 1.2us. Fig. 169 shows the convergence

to pattern B with input B in 1.7us. Fig. 170 shows the convergence to pattern B

with input B in 0.8us. Fig. 171 shows the convergence to pattern € with input C in

1.4us.  Fig. 172 shows the convergence to pattern C with input € in 1.7us.
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Fig. 167. Convergence to Pattern A When the Input Is Pattern A in BAM with
Multiplier Synaptic Matrix and Vp;,, = —3.77V for 3 Stored Patterns
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Fig. 168. Convergence to Pattern A When the Input Is Pattern A in BAM with
Multiplier Synaptic Matrix and Ve = =3.77V for 3 Stored Patterns
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Fig. 169. Convergence to Pattern B When the Input Is Pattern B in BAM with
Multiplier Synaptic Matrix and Vi, = —3.77V for 3 Stored Patterns
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Fig. 170. Convergence to Pattern B When the Input Is Pattern B in BAM with
Multiplier Synaptic Matrix and Ve = —3.77V for 3 Stored Patterns
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Fig. 171. Convergence to Patiern C When the Input Is Pattern C in BAM with
Multiplier Synaptic Matrix and Vy,, = —3.77V for 3 Stored Patterns
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Fig. 172. Convergence to Pattern C When the Input Is Pattern C in BAM with
Multiplier Synaptic Matrix and Vp,, = =3.77V for 3 Stored Pattems
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Fig. 173.Four Pair of Patterns (and Their Complementaries) to Be Programmed into
the S X 5 BAM

Four Patterns
Up to now the 5 x 5 BAM was able to store two and three patterns. This means
that once an input pattern is given and the circuit has converged to a steady state, if
the inputs are suppressed the system remains in the same state. This check has been
performed for all convergences so far and they have been always stable. Now we are
going to try to store four different pair of patterns in our 5 x 5 BAM and we will find
out that the steady states change if we suppress the inputs. The patterns we tried to

store ate shown in Fig. 173 and their corresponding normalized weight matrix is

-

-2 2 2 0 0

29 -2 2 0 © |
-4 0 0 2 2 (5.10)
0 0 0 -2 2 |

o6 0 -4 2 -2

The obtained results are summarized in Fig. 174. In the first column the input pat-
terns connected to the input current sources are shown. The second column contains
the corresponding stable states, i.e., the circuit is let to converge with input patterns
connected to it and then the inputs are disconnected and the circuit is let to converge
to a stable state.

The stable patterns observed when connecting the inputs to the programmed
patterns were B, C, C, a, 8, and 7. The question now rises whether or not the
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complementaries of the new patterns are stable. This is shown in Fig.-175, where we
can see that & yields to v, 8 to « and ¥ to 7.

Figs. 176 to 180 show some transient responses of the results shown in Fig. 174.
The first 3us in these oscillograms correspond to the steady state reached when ex-
ternal input currents are provided. The rest of the time shows the transient produced
when the inputs are disconnected and the new stable state is reached. These figures
show four traces in four separate windows. The four traces correspond to four of the
ten bits of the patterns. Fig. 176 shows bits =i, Zs, ya and y« when the input pattern
A is disconnected and the BAM converges to the stable pattern a in 24us. Fig. 177
shows bits 23, T4, §3 and ys when the input A is disconnected and the BAM converges
to A in 10us. Fig. 178 shows bits z4, zs5, 11 and y, when the input B is disconnected
and the BAM converges to v in Tus. Fig. 179 shows bits =i, 23, y2 and ya when the
input D is disconnected and the BAM converges to 8 in 6ps. And Fig. 180 shows
bits zg3, T4, y1 and ys when the input D is disconnected and the BAM converges to

a in 6us.

ii. 9x 9 Modular BAM

When sending a chip design for fabrication to MOSIS they provide you with four
samples of each chip. This means that we had available four samples of the multipher
matrix chip, as well of the input current sources chip and the nonlinear resistors chip.
This allowed us to test the modular approach techrique of Fig. 121 in Chapter 1V,
as well as the behavior of a larger BAM system.

Although we could have built a 10 x 10 BAM with the chips arranged as shown
in Fig. 121, we decided to make a 9 x 9 BAM. This means that the output neuron
nodes 20 and ¥ had to be connected to a voltage source of value GN Dy, s0 that
the last row and column of the 10 x 10 synaptic matrix would not have any effect

on the other neurons. The patterns we wanted to store are shown in Fig. 181. The
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corresponding normalized weight matrix is

(-3 -1 -1 -1 3 -1 1 -1 -17.
1 3 -1 -1 -t -1 1 3 8§

S e i £ RN 8 o i [P — o one sy
S :1 l‘f_§ ! I} ! —ll"i ' i
I N N SN I | __]_Q 3 =3 —1 =it~ i

1 1 -3 t.-3 3 & 1] (6.11)
1 <1 -1 3 1: 3 =3 31 =1 ;
A : A :
1 -1 -1 3 -} 3 -3 -1 -3 !
1 -1 -1 _—1?—1 1 ¥ 1 l
-1 -3 1 1 1t1 -1 =3 -3

The multipliers bias voltage we used was V;, = —3.7TV (see Fig. 143), and to program
the weights the ¥ terminal of the multipliers (see Fig. 140) was connected to the
voltages, -

Y =—28V for Wy = -|'"3

Y =-22V for w;; = +1

YV'=-18V for wy; = -1

(5.12)

Y =-12V for wj;=-3

The observed results are summarized in Fig. 182. Note that the BAM did not work
perfectly well, because the patterns B and C did not have a siable state. Instead,
these patterns were slightly distorted.

In the experimental set up only the neurons of layer 1 had switches to set their
initial conditions to GN Dy,p = ~1.00V. The neurons of layer 2 were always free. The
experimentally measured transients of the results of Fig. 182 are shown in Figs. 183
to 188. Only the neuron outputs of layer 1 are shown in each case. Fig. 183 shows
the convergence to pattern A with input A in 2.0pus. Fig. 184 shows the convergence
to pattern A with input A in 2.2us. Fig. 185 shows the convergence to pattern B
with input B in 1.3us. Fig. 186 shows the convergence to pattern a; with input B in
1.5us. Fig. 187 shows the convergence to pattern a; with input C' in 2.9us. Fig. 188
shows the convergence to pattern € with input C in 1.3ps.
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Fig. 184. Convergence to Pattern A with Input A in 9 X 9 BAM
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Fig. 185. Convergence to Patiern B with Input B in 9 X 9 BAM
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Fig. 186. Convergence to Pattern o, with Input B in 9 X 9 BAM



209

-500.000ns 2.00000us 450000

1
S
L
!
i

500.0 mVolts/div Offset -1.000 Volts

Ch. 1 = =
Ch.2 = 5.000 Volts/div Offset = 0.000 Volts
Timebase = 500 ns/div Delay = 2.00000 ps

Fig. 187. Convergence to Pattern ¢, with Input C in 9 X 9 BAM



210

-300.000ns 2.00000us 4.50000us

e

-

Ch. 1 = 500.0 mVolts/div Offset = -1.000 Volts
Ch.2 = 5.000 Volts/div Offset = 0.000 Volts
Timebase = 500 ns/div Delay = 200000 s
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This 9 x 9 BAM did not work properly. What could have been the reason? We
found out that it was due to the offset output current of each synapse. By looking
at the transfer curves of the synaptic multipliers when biased at V}, = —=3.77TV (see
Fig. 143), we can see that they have a negative output offset current. This means
that each neuron is being disturbed by an offset current N or M times bigger than
the one of each multiplier. Therefore, as the BAM grows in size each neuron will
have to suffer a greater disturbance. In this case, the offset current is negative, so
we would expect that some of the neurons that should go to the ‘1’ state will be at
‘Q” {*-17 strictly speaking). This is precisely what happened if we look carefully at
Fig. 182. Therefore, as the BAM grows it becomes more and more sensitive to the
systematic offset current of each synaptic multiplier.

In a practical situation this effect can be compensated by designing each neuron
with a current source connected in parallel. The value of this current source needs to
be trimmed to absorb the total offset current coming from all the synaptic multipliers
that have their output node connected to this neuron. However, in our particular case
we did not need to modify the circuit, because we can modify the offset current of
the multipliers by manipulating the value of Vii,. By looking at-Fig. 144 we can see
that if V., = —3.80V the average output current when ¥ = GN Dyostom = —2.00V
is very close to zero. The measured results obtained, by just changing Vii,,, are
surnmarized in Fig. 189. The corresponding transients are shown in Figs. 190 to 201.
Fig. 190 shows the convergence to pattern A of neurons in layer 1, with input A, in
4.3us. Fig. 191 shows the convergence to pattern A of neurons in layer 2, with input
A, in 4.3us. Note that initially all outputs are high. This is because the neurons
of layer 2 did not have switches to set the initial conditions. Fig. 192 shows the
convergence to pattern A of neurons in layer 1, with input A, in 4.3ps. Fig. 193
shows the convergence to pattern A of neurons in layer 2, with input A, in 4.3us.
Fig. 194 shows the convergence to pattern B of neurons in layer 1, with input B, in
4.3us. Fig. 195 shows the convergence to pattern B of neurons in layer 2, with input
B, in 4.3us. Fig. 196 shows the convergence to pattern B of neurons in layer 1, with
input B, in 4.3us. Fig. 197 shows the convergence to pattern B of neurons in layer
2, with input B, in 4.3us. Fig. 198 shows the convergence to pattern C of neurons
in layer 1, with input C, in 4.3us. Fig. 199 shows the convergence to pattern C of
neurons in layer 2, with input C, in 4.3us. Fig. 200 shows the convergence to pattern
C of neurons in layer 1, with input C, in 4.3us. Fig. 201 shows the convergence to
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lput " Stable Pattern wh
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Fig. 189. Stable States of 9 x 9 BAM When Compensated for Offset Currents
pattern C of neurons in layer 2, with input &, in 4.3us.

2. Hopfield Network

By making a small interconnection trick we could use the bidirectional multipliers
synaptic matrix chip to build a Hopfield network (see Fig. 90 in Chapter 1II}. This is
illustrated in Fig. 202. In the BAM synaptic matrix chip, shown in Fig. 202(a), the
multipliers i5 and i3’ shared the same weight voltage connection. This property will
make that the resulting Hopfield circuit of Fig. 202 has an inherent symmetric weight
matrix. The only precaution to be taken here is to make sure that the weights of the
diagonal elements are made zero.

The pattern we want to store in this 5-neurons Hopfield network is shown in
Fig. 203. The capacity of Hopfield’s network was determined empirically by himself
and resulted to be around 0.15N for more than 2 patterns. This means that for a
S-neuron circuit we cannot expect to be able to store more than one pattern.
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-200.000ns 2.30000us 4.80000s

B
{

500.0 mVolts/div Offset -1.000 Volts

Ch. 1 = =
Ch.2 = 5.000 Volts/div Offset = 0.000 Volts
Timebase = 500 ns/div Delay = 230000 ps

Fig. 190. Convergence to Pattern A with Input A in Offset Compensated 9 X 9
BAM (Only Laver 1 Is Shown)
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-1.00000u5 4.00000uLs 9.00000ps

3
4
E
E
e
L4
-
L

Ch.1 -1.000  Volts

= 500.0 mVolts/div Offset =
Ch.2 = 5.000 Volts/div Offset = 0.000 Volts
Timebase = 1.00  ps/div Delay = 4.00000 us

Fig. 191. Convergence to Pattern A with Input A in Offset Compensated 9 X 9
BAM (Only Layer 2 Is Shown)
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-750.000ns 3.00000us 6.75000us

( —
Ch. 1 = 500.0 mVolts/div Offset = -1.000 Volts
Ch.2 = 5.000 Volts/div Offset = 0.000 Volts
Timebase = 750 ns/div Delay = 3.00000 s

Fig. 192, Convergence to Pattern A with Input A in Offset Compensated 9 X 9
BAM (Only Layer 1 Is Shown)
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-750.000ns 3.00000ps 6.75000us

Ch.1 = 500.0 mVolts/div ' Offset = -1.000 Volts
Ch.2 = 5000 Volts/div Offsct = 0.000 Volts
Timebase = 750  ns/div Delay = 3.00000 ps

Fig. 193. Convergence to Pattern A with Input A in Offset Compensated 9 X 9
BAM (Only Layer 2 Is Shown)



217

~750.000ns 3.00000}s 6.75000s

Ch. 1 = 500.0 mVolts/div Offset = -1.000 Volts
Ch.2 = 5000 Voits/div Offset = 0.000 Volts
Timebase = 750 ns/div Delay = 3.00000 s

Fig. 194. Convergence to Pattern B with Input B in Offset Compensated 9 X 9
BAM (Only Layer 1 Is Shown)
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-1.50000ps 6.00000ps 13.5000ps

Ch.1 = 500.0 mVolts/div Offset = -1.000 Voits
Ch.2 = 5.000 Volts/div Offset = 0.000 Volts
Timebase = 1.50  ps/div Delay = 6.00000 ps

Fig. 195. Convergence to Pattern B with Input B in Offset Compensated 9 X 9
BAM (Only Layer 2 Is Shown)



219

-1.50000us 6.00000Ls 13.5000us

-

L
3
4

E

Ch 1 5000 mVolts/div o Offset

= = 'lvm Volts
Ch. 2 = 5.000 Volts/div Offset = 0.000 Volts
Timebase = 1.50 Ms/div Delay = 6.00000 s

Fig. 196. Convergence to Pattern B with Input B in Offset Compensated 9 X §
BAM (Only Layer 1 Is Shown)
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-1.50000ps 6.00000us 13.50004s

- }

Ch.1

= 500.0 mVolts/div Offset = -1.000 Volts
Ch.2 = 5.000 Volts/div Offset = 0.000 Volts
Timebase = 1.50  ps/div Delay = 6.00000 us

Fig. 197. Convergence to Pattern B with Input B in Offset Compensated 9 X 9
BAM (Only Layer 2 Is Shown)
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-200.000ns 2.30000us 4.80000us

S

| - P | PPN e
L] L)

Ch. 1 = 500.0 mVolts/div Offset = -1.000 Volts
Ch.2 = 5000 Volts/div Offset = 0.000 Volts
Timebase = 500 ns/div Delay = 230000 pus

Fig. 198. Convergence to Pattern C with Input C in Offset Compensated 9 X 9
BAM (Only Layer 1 Is Shown)
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~750.000ns 3.00000us 6.75000us

-
4
-
1
-
1
-’
L

Ch. 1 = 500.0 mVolts/div Offset = -1.000 Volts
Ch.2 = 5.000 Volts/div Offset = 0.000 Volts
Timebase = 750 ns/div Delay = 3.00000 s

Fig. 199. Convergence to Pattern C with Input C in Offset Compensated 9 X 9
BAM (Only Layer 2 Is Shown)
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-750.000ns 3.00000us 6.75000us

[ﬁ‘
4
-

-1.000 Volts

Ch. 1 = 500.0 mVolts/div Offset =
Ch. 2 = 5.000 Volts/div Offset = 0.000 Volts
Timebase = 750 ns/div Delay = 3.00000 s

Fig. 200. Convergence to Pattern C with Input € in Offset Compensated 9 X 9
BAM (Only Layer 1 Is Shown)
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-750.000ns 3.00000us 6.75000us

I

Ch.1 = 5000 mVolts/div Offset = -1.000 Volts
Ch. 2 = 5000 Volts/div Offset = 0.000 Volts
Timebase = 750 ns/div Delay = 3.00000 ps

Fig. 201. Convergence to Pattern C with Input C in Offset Compensated 9 X 9
BAM (Only Layer 2 Is Shown)
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Fig. 202. Hopfield Network Built with T-Mode BAM’s Modular Chip Components;
(a) Interconnection Strategy, (b) Resulting Hopfield T-Mode Circuit
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X1 X3 X3 X4 X5
Pattern 10101

Fig. 203. Pattern to Be Stored in the 5-Neuron Hopfield Circuit

The normalized weight matrix for the pattern of Fig. 203 is,
[0 -1 1 -1 1]
-1 0 -1 1 - |
1 “1-0 | 11 . | (5.13)
Iy 211 =10

We biased the multipliers with Viies = —3. 7TV and connected their weight inputs Y
(see Fig. 140) to the following voltages,

= 2.8V for wi; = +1
= =2.0V for w;=0 (5.14)
Y =-12V for w;=-1

The measured transient responses are shown in Figs. 204 to 206. Fig. 204 shows the
convergence to pattern 10101 (21) with input 10101 (21), in 0.9us. Fig. 205 shows the
convergence to pattern 01010 (10) with input 01010 (10), in 1.3us. Fig. 206 shows
the convergence to pattern 10101 (21) without any input, in 1.3us. In Fig. 207
‘we show the resulting stable states obtained when connecting all 2° possible input
combinations. As we saw in Fig. 206 this Hopfield circuit prefers stable state 10101
(21) better than 01010 (10). This is also reflected in the results of Fig. 207, where the
network converged to pattern 10101 {21) unless the input had a hamming distance of
‘1’ or 0’ to pattern 01010 (10).

We also tried to program two patterns into the 5-neuron Hopfield circuit to see

what happens. The candidate patterns are shown in Fig. 208 and their corresponding
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-300,000ns 1.20000us 2.70000ps

Ch.1 = 5000 mVolts/div  Offset = -1.000 Volts
Ch.2 = 4000 Volts/div Offset = 0.000 Volts
Timebase = 300 ns/div Delay = 120000 s

Fig. 204. Convergence to Pattern 10101 (21) with Input 10101 (21) in the T-Mode
Hopfield Network
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-300.000ns 1.20000u.5 2.7000041s

E

L

Ch. 1 = 500.0 mVolts/div Offset = -1.000 Volts
Ch.2 = 4000 Volts/div Offset = 0.000 Volts
Timebase = 300 ns/div Delay = 1.20000 s

Fig. 205. Convergence to Pattern 01010 (10} with Input 01010 (10) in the T-Mode
Hopfield Network
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-300.000ns 1.20000us 2.70000us

)

Ch. 1

L
e
e
E

500.0 mVolts/div Offset -1.000  Volts

Ch. 2 = 4,000 Volts/div Offset = 0.000 Volts
Timebase = 300 ns/div Delay = 120000 s

Fig. 206. Convergence to Pattern 10101 (21) without Any Input in the T-Mode
Hopfield Network
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Input Stable Pattem
() 00000 10101  (21)
(1) 00001 10101 (21) oo
(2) 00010 01010 - (10 T
(3) 00011 10101 (21)
@) 00100 10101 (21) i
(5) 00101 10101 (21) &
6 00110 10101  (21) '
(7 00111 10101  (21)
(8) 01000 01010 (10)
9 01001 10101  (21)
(10) 01010 01010 (10)
(11) 01011 01010 (10) ]
(12) 01100 10101  (21) i
(13) 01101 10101  (21)
(14) 01110 - 01010  (10)
(15) oOl1111 10101 (21)
(16) 10000 10101 (21)
(17) 10001 10101  (21)
(18) 10010 10101 (21)
(19) 10011 10101  (21)
(20) 10100 10101 (21)
(21) 10101 10101  (21)
(22) 10110 10101 (21)
(23) 10111 10101 (21)
(24) 11000 10101 (21)
(25) 11001 10101  (21)
26) 11010 01010 (10)
27 11011 10101  (21)
(28) 11100 10101 (21) _
(29) 11101 10101 (21) B
(30) 11110 10101  (21)
(31) 11111 10101 (21)

Fig. 207. Measured Stable States for Hopfield Circuit Loaded with the Pattern of
Fig. 203
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X1 X2X3X4 X5 X1 X2 X3X4 X5

Fig. 208. Two Patterns to Be Stored in the 5-Neuron Hopfield Circuit

normalized weight matrix is given by,

0 0 0 -2 0]
o 0 -2 0 -2
6o -2 0o o0 2 (5.15)
4=-2 0 0 0 O
6 -2 2 6 0

The multipliers were biased with Vi, = —3.77V and their weight inputs ¥ (see
Fig. 140) were connected to the voltages,

= 28V for Wiy = +2
Y = =20V for w;=0 (5.16)
Y =-1.2V for wy; = =2

The resulting stable states for all possible inputs are shown in Fig. 209. Note that
besides the expected stable states 00111 (7), 01010 (10), 10101 (21) and 11000 (24)
three other parasitic stable states appeared, 00101 (5), 01000 (8) and 10000 (16).
As an illustration of the transient responses, in Fig. 210 we show the convergence to
pattern 10000 (16) with input 11011 (27) in 9pus.

3. Winner-Take-All Network

A winner-take-all network, as shown in Fig. 211, is an N-neuron network in which
every neuron inhibits each other and excites itself. As a result of this action only the
neuron with the greatest input I; will be activated. All inhibitory connections have
the same weight w™, and so do all excitatory connections w*. Since this is a fully

interconnected network it can be viewed as a special case of the Hopfield circuit of
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o 8
Input Stable Pattern " “+
©) 00000 01000 (8) o,
1) 00001 00101 (5) i |
(2) 00010 01010 (10)
(3) 00011 00111 (7)
4) 00100 00101 (5)
(5) 00101 00101 (5)
(6) 00110 00111 (7)
(7 00111 00111 (7)
8) 01000 01000 (8)
9) 01001 01000 (8)
(10) 01010 01010 (10)
{1y 01011 01010 (10)
(12) 01100 01000 (8)
(13) 01101 00101 (5)
(14) 01110 01010 (10)
(15) 01111 00111 (7)
(16) 10000 11000 (24)
17) 10001 10101 (21)
(18) 10010 11000 (24)
19y 10011 10101 (21)
(20) 10100 10101 (21)
(21) 10101 10101 (21) -
(22) 10110 10101 (21)
(23) 10111 10101 (21)
(24) 11000 11000 (24)
(25) 11001 11000 (24)
(26) 11010 11000 (24)
(27) 11011 10000 (16)
(28) 11100 11000 (24)
(29) 11101 10101 (21) .
(30) 11110 11000 (24)
Gl 11111 10101 (21)

Fig. 209. Measured Stable States for Hopfield Circuit Loaded with Patterns of Fig. 208
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-2.00000ps 8.00000us 18.0000us

Ch.1 = 5000 mVolts/div Offset = -1.000 Volts
Ch.2 = 4000 Volts/div Offset = 0.000 Volts
Timebase = 2.00  ps/div Delay = 8.00000 pus

Fig. 210. Convergence to Pattern (16) with Input (27) for Hopfield T-Mode Circuit
with 2 Stored Patterns
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Fig. 211. Winner-Take-All Interconnection Topology

Fig. 202, in which the interconnection matrix is given by,

(wt w™ w- wm wo

g
|
g
+
e.
1
€
g

et e wr| )

An important issue to be taken into account is that inhibitory interconnections have
to remain inhibitory always, and excitatory interconnections have to be excitatory
always. This means that for the synaptic multipliers we cannot use any more the
four-quadrant ones as they were shown in Figs. 143 to 145. Now they have to have
DC transfer characteristics as shown in Fig. 212 3.

The weights w* and w™ of the winner-take-all network have to be chosen in such
a way that the only stable configurations are those with a single active neuron. This
implies that output configurations with 2 or more active neurons have to be made
unstable. For example, in our case of 5 neurons, if all five are active (normalized
output is ‘1') then each neuron is receiving a total current of value w* + 4w™. If this
is the case, we want each neuron to receive a negative current so that they will tend

3In the literature a network with this property is often referred to as a binary
network, as opposed to the bipolar ones that use four-quadrant multiplications.



235

Fig. 212. Two-Quadrant Synaptic Multipliers .Needed for the Winner-Take-All
T-Mode Implementation

to go to state ‘0’. This implies that w* 4 4w~ < 0. Similar conditions are imposed
if there are four, three or two active neurons. For the case of only one active neuron,
we want it to be stable. This means, we have to make that the active one receives
a positive current while the others receive negative currents. Mathematically, and

using the normalized model, we need to satisfy the following conditions,
a) 5 neurons ‘1’ — wunstable = wt+4w™ <0
b) 4 neurons ‘I’ — unstable = w* +3uw™ <0
¢) 3 peurons ‘1’ — unstable = w* + 2w"'.< ] _-(.5.18)
d) 2neurons ‘I’ — unstable => w*+w” <0

. . wt >0
e) 1 neurons'l’ — stable =
. w™ <0

-S-“i.n-ce by conditions e) it has to be w™ < 0 this implies that conditions a) to ¢} will
be satisfied if d) is true. Therefore, the weights tw* and w~ have to be such that
wt>0

w < —w™
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A possible solution is, )
wt = 5 w” = -1 (5.20)

In the physic-a.l circuit we. made GND,,, = E~ = —1.5V in order to transform our
four-quadrant multipliers into two-quadrant ones. Their_ bias voltage was Vi, =
—3.77V, and their weight inputs ¥ (see Fig. 140} were connected to the voltages,

Y =-24V for wt=1/2

: {5.21)
Y=-12V for w—=-1

The topology of the circuit is the same than the one of the 5-neuron Hopfield network
of Fig. 202. The only difference are the values of the weights and that GN D¢, =
E-. However, a winner-take-all network is very sensitive to mismatches between
the neurons. Therefore, if there is a mismatch in the integrating capacitance of
the neurons there will be different time constants associated to each neuron. If for
example the neuron that should be the winner is slower than the others then it might
be possible that another neuron becomes ‘1’ faster and avoids that any other neuron
becomes ‘1’. So far the integrating capacitance of each neuron has been realized by
the parasitic capacitance of the interchip connection. But when the oscilloscope probe
is connected to one of the neurons this capacitance is drastically altered. Until now
it was not critical, but it is for the winner-take-all network. Therefore we decided to
add an external capacitance of 10nF to each neuron node so that the winner-take-all
circuit would be insensitive to the oscilloscope probe.

An experimentally measured transient response is shown in Fig. 213 where two
peurons had an input current of the same value. Only one of them wins the compe-
tition while all the other neurons end up in the ‘0’ state. o

4. Sin_l}ii‘ﬁéal-Gfossb-erg Network
A crude simplification of Grossberg’s ART1 network could be a BAM network whose
top layer is a winner-take-all network. We built such a network with 5 neurons per
layer by using two of the multiplier synaptic matrix chips, as is shown in Fig. 214.

The capacity of a Grossberg Network is given by the number of neurons in the winner-
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900.000yLs

1
Ch. 1 = 300.0 mVolts/div Offset = -1.000 Volts
Ch,2 = 3000 mVolts/div Offset = -1.000 Volts
Timebase = 100 ps/div Delay = 400.000 us

- Fig. 213. Winner-Take-All T-Mode Circuit with Input (10010); The Two Traces Cor-
respond to Neurons x; and 74, The Integrating Capacitance of Each Neuron
is 10nF, Viias = —3.77V, GNDyotiom = —2.00V, GND,, = E- = —1.5V,

Et =-0.5V
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Fig. 214. Interconnection Topology for Simplified Grossberg Network Using the BAM

Modular Chips
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xlX2X3X4XS
A:

X1X2X3X4x5
B: ]

X1X2X3X4X5
C.
| X1X2X3X4X5
D:

XIX2X3X4K5
E:

Fig. 215. Five Patterns to Be Stored in the Simplified Grossbherg Network

take-all layer. If the patterns to be stored are represented by five vectors

A e (md pd pd ) ad -
Aj - (al,ag,aa'aq,as) J = 1,...5

. (5.22)
al = %1
then the normalized weight matrix is given by,
Wy = a{ (5.23)

We wanted to store the five patterns shown in Fig. 215. The corresponding weight

matrix is given by,

1o-1 1 -1 1
“ -ff;l -1 {1'.1_ |

t -1 1 -1 - (5.24)

1 =1 -1 1 -1

1 -1 1 -1 -
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Note that now, since equation (5.23) is not a Hebbian law, by storing a certain pattern
we are not storing its complementary at the same time.

The bias used for the multipliers was Vj,e = —3.77V. The multipliers chip
that performed the interconnections between the two layers had its ground terminals
connected to GNDyp = —1.00V, GN Dypiom = —2.00V. The multipliers chip that
performed the winner-take-all interconnections between neurons of layer 2 had its
ground terminals connected to GN Dy, = E- = 1.5V, GN Dyostom = —2.00V. The
limiting voltages of the nonlinear resistors were identical for both layers, E- = 1.5V,
E+ = —0.5V. The weight inputs for Y (see Fig. 140) were connected to ihe voltages,

==28V for wy=+1
Y = =24V for wy; = +1/2 (5.25)
=—-1.2V for wy; = -1

Fig. 216 summarizes the results obtained when connecting all possible input combi-
nations. The first column indicates the input patterns, the second column shows the
stable states in the first layer, the third column the stable states in the second layer, .
and the-last column shows the corresponding active patterns at the top layer. Note
that when only one pattern becomes active (only one neuron is ‘1’ in layer 2} it is the
one with the closest Hamming distance to the input pattern. When more than one
patterns become active it is because they have the same minimum Hamming distance
to the input pattern. Figs. 217 to 226 illustrate some of the transient responses of
this circuit. Fig. 217 shows the convergence to pattern A in layer 1 with input A
in 3.5us. Fig. 218 shows the convergence to pattern A in layer 2 with input A in
30us. Fig. 219 shows the convergence to pattern B in layer 1 with input B in 9.0ps.
Fig. 220 shows the convergence to pattern B in layer 2 with input B in 45¢s. Fig. 221
shows the convergence to pattern C in layer 1 with input C in 7.0ps. Fig. 222 shows
the convergence to pattern C in layer 2 with input C in 42us. Fig. 223 shows the
convergence to pattern D in layer 1 with input D in 10us. Fig. 224 shows the conver-
gence to pattern D in layer 2 with input D in 37us. Fig. 225 shows the convergence
to pattern E in layer 1 with input E in 7.0us. Fig. 226 shows the convergence to
pattern E in layer 2 with input F in 43us.



Stable Pattern

Input Layer ] Layer 2 _
(0) 00000 00000 01000 B
(1) 00001 00001 01000 .. B
2) 00010 00010 01100 BC
3) 00011 00010 00010 D
4) 00100 00000 01000 B
(5) 00101 10101 00100 C
6) 00110 01010 00010 D
7 00111 11111 10000 A
(8) 01000 01000 01011 | BDE
9) 01001 01010 00010 | D
(10) 01010 01010 00010 D
(11) 01011 11111 10000 A
(12) 01100 01110 10010 AD
(13) 01101 11101 10100 AC
(14) 01110 01110 10010 AD
(15) 01111 11111 10000 A
(16) 10000 00000 01000 - B
(17) 10001 10101 00100 0 C
(18) 10010 00010 (1010 #BD
(19) 10011 10111 10100 :AC
(20) 10100 10101 00100 - C
(21) 10101 10101 00100 - C
(22) 10110 10111 10100 ~AC |
(23) 10111 10111 10100 CAC|
(24) 11000 11000 00001 E
(25) 11001 11000 00001 E
(26) 11010 01010 00010 D
27 11011 11111 10000 A
(28) 11100 11000 00001 E
(29) 11101 11101 10100 AC
(30) 11110 11111 10000 A
31y 11111 11111 10000 A

Fig. 216. Stable Patterns Obtained for the Simplified Grossberg Network

241



242

-500.000ns 2.00000us 4.50000us

Ch. 1
Timebase

250.0 mVolts/div Offset
500 ns/div Delay

-1.000  Volts
2.00000 s

Fig. 217. Convergence to Pattern A in Layer 1 with Input A for Simplified Grossberg
Network
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-5.00000us 20.0000ps 45.0000us

L ]
o

Ch.1 = 2500 mVolts/div Offset = -1000 Volts
Timebase = 500  us/div Delay = 20.0000 s

Fig. 218. Convergence to Pattern A in Layer 2 with Input A for Simplified Grossberg
Network
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-2.00000us 8.00000us 18.0000us

-1.000  Vols
8.00000 s

250.0 mVolts/div Offset
200  psidiv Delay

Ch. 1
Timebase

Fig. 219. Convergence to Pattern B in Layer 1 with Input B for Simplified Grossberg
Network
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-5.00000)s 20.0000ps 45.0000us
+

Ch.1 = 2500 mVolts/div Offset = -1.000 Volts

Timebase = 5.00 ps/div Delay = 200000 pus

Fig. 220. Convergence to Pattern B in Layer 2 with Input B for Simplified Grossberg
Network
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-2.00000us 8.00000us 18.0000pus

-1.000  Volts
8.00000 s

Ch. 1
Timebase

250.0 mVolts/div Offset
200  ps/div Delay

[

I

Fig. 221. Convergence to Pattern C in Layer 1 with Input C for Simplified Grossberg
Network
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-10.0000us 40.0000¢Ls 90.0000Ls
Ch. 1 = 250.0 mVolts/div Offset = -1.000 Volts
Timebase = 10.0  ps/div Delay = 40.0000 us

Fig. 222. Convergence to Pattern C in Layer 2 with Input C for Simplified Grossberg
Network
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-2.00000ys 8.00000s 18.0000us

s
Ch. 1 = 250.0 mVolts/div Offset = -1.000 Volts
Timebase = 2.00  ps/div Delay = 8.00000 us

Fig. 223. Convergence to Pattern D in Layer 1 with Input D for Simplified Grossberg
Network
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-5.00000ps 20.0000s 45.00001s

-1.000 Volts
20.0000 ps

2500 mVoltydiv Offset
5.00 Hs/div Delay

Ch. 1
Timebase

A

Fig. 224. Convergence to Pattern D in Layer 2 with Input D for Simplified Grossberg
Network



-1.00000us 4.00000u.s 9.00000us

-1.000  Volts
400000 s

250.0 mVolts/div Offset
1.00  ps/div Delay

Ch. 1
Timebase

o

Fig. 225. Convergence to Pattern E in Layer 1 with Input E for Simplified Grossberg
Network
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-5.00000s 2000005 45.0000s
1.
4‘
F
Ch.1 = 250.0 mVolis/div Offset = -1.000 Volts
Timebase = 5.00  ps/div Delay = 200000 ps

Fig. 226. Convergence to Pattern E in Layer 2 with Input £ for Simplified Grossberg
Network
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5. Constrained Quadratic Optimization Circuit

We also tried to build a quadratic constrained optimization circuit (see Fig. 97 in
Chapter 11I) using the modular chips of the BAM. Until now all neural networks that
we have built performed in such a way that in the steady state their outputs saturated
to a maximum or minimum value. For T-mode implementations these maximum and
minimum values were imposed by the limiting voltages E* and E~ of the nonlinear
resistors. In optimization circuits, however, the steady state output may take any
value in the range from E- to E+. This property makes optimization circuits to be
precision circuits. Now, for example, the linearity of the synapses is important. This
means that if we are going to use previous T-mode synaptic multipliers for making
optimization circuits, we cannot expect a very high precision in the results. But it will
serve to illustrate the high potential of the T-mode circuit design technique. Modified
T-mode circuits with higher precision are possible by modifying the OTA structure
and/or its transistor sizes.

The optimization problem we want to implement is to minimize

¢ =2V Va- 2VaVs + V5 (5.26)
subject to the constraints,
izo .

The exact solution to this problem is,

1

Vi=0, Voa==-, Vo= (5.28)

[
D] —

The corresponding normalized matrices and vectors are (see equations (3.25) and
(3.26) in Chapter II}, " ' ' S

6 0 21 [1 00 0 0

g=|o o -2|.B=|0o -1 o, A=|of,E=]1/2 (5.29)
2 —2 2 o 0 1 0 0

The corresponding normalized circuit is shown in Fig. 227. In practice we have
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Fig. 227. Normalized T-Mode Optimization Circuit for Solving the Problem of Equa-
tions (5.26) and (5.27)
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1
®= 56"33%2 + G1aWiVa + GsVa Vs
fi= BuWi 20

(5.30)
fa= BV~ E 20
Ja= BupVa >0
with,
Gag = 29'0 Bu=g .
G =% Bug=-— ﬁ;iég___l_ (5.31)
11 = <% 12 = — % Ba, =3 2 = 290 .. .

G23 = —290 -833 =g

Where g, is a scaling transconductance. For Vi, = —3.77V andif Y = —~1.2V, 2.8V,
according to Fig. 143 it would be g, ~ 30u1).

Suppose each multiplier in Fig. 227 has a normalized input linear range of
(—=1,+1). This means that the solution vector (V4, Vi, Va) has to remain inside this
linear range. But the vector (A1, Az, A3) has to satisfy this too. In the steady state

we will have, o

. ) IR . g
FRRRLST P4 Ry | 1Y S P9 ) R T

0 0 -l 2 -2 2] Vs B —2% +2V; -2V,

- o | T S (5.32)
Since —1 < A; < 41, this implies that

-_,1_<p5-5_1.'.'- : : o

1 2- 2-. ISR ST ¥ (5.33)
~3 <W-V+¥Kh< 3

Therefore, the actual normalized linear range is (—1/2,+1/2) *. The real multipliers
that we are using have an approximately linear range of +500mV (see Fig. 143).
According to equation (5.33) we have to reduce this by 1/2, i.e., £250mV . Therefore,

4Strictly speaking, according to the worst case in the second equation of (5.32)
the normalized linear range has to be reduced to (—1/6,+1/6). However, for our case
this is not necessary. :
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if V;, \; are the normalized voltages and V/, A! are the real ones, they are related by

1
Vi Xi=7A (5.34)

Using this down scaling in equations (5.30} yields,

o = 169
' — 4
fl fl (5.35)
fi= BpVa—-E3 20
£ af, . e

This means that G;; and B;; may remain with the same values as in equations (5.31).
But E; needs to be changed to F; so that '

G<g (5.36)
This will make that,
B, = —381’- (5.37)

We used a bias voltage for the multipliers of Viia, = —3.77V and their weight inputs
were connected to either Y = —1.2V or Y = —2.8V. This will make g, = 30
(see Fig. 143). The interconnection topology for this circuit using the modular chips
of the BAM is shown in Fig. 228. The buffers were added in order to eliminate
the bidirectional nature of the B matrices. On the other hand, the bidirectional
nature of matrix G will automatically provide the factors 2 for the G;; elements in
equations (5.31). For the diodes of Fig. 227 we used our nonlinear resistors and made
E* = GNDyp = —1.00V and E~ = —5.00V. The final measured steady state of the
circuit was,

V! =90mV, V] =180mV, V] =125mV

A = —300mV, M, = —250mV, A =20mV

(5.38)

According to the exact solution of equations (5.28) the corresponding scaled down
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Fig. 228. Interconnection Topology for Optimization Circuit
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Memory 5 = 500.0 mVolts/div ) Offset = -1.000 Volts
Timebase = 100 ps/div Delay = 400.000 s
Memory 6 = 500.0 mVolts/div Offset = -1.000 Volts
Timebase = 100 ps/div Delay = 400.000 s
Memory 7 = 500.0 mVolts/div Offset = -1.000 Volts
Timebase = 100 ps/div Delay = 400.000 ps
Memory 8 = 500.0 mVolts/div Offset = -1.000 Volts
Timebase = 100 ps/div Delay = 400.000 ps

Fig. 229. Transient Response of Optimization Circuit; Traces Are (Top to Bottom)
V]_, Vz, V3 and Trigger Signal

voltages should have been,

Vi =0V, V] =125mV, Vj = 125mV
Ay = =250mV, A} = —-250mV, A; =0V

(5.39)

The small discrepancy is due to the fact that we are using nonprecision elements for
a precision circuit. However, we have been able to show the potential of the T-mode
technique for this kind of circuits. Figs. 229 and 230 show the transient responses of

this circuit.
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Memory § = 500.0 mVolts/div Offset = -1.000 Volts
Timebase = 100 Usfdiv Delay = 400.000 us
Memory 6 = 500.0 mVolts/div Offset = -1000 Volts
Timebase = 100 ps/div Delay = 400.000 s
Memory 7 = 500.0 mVolts/div Offset = -1.000 Volts
Timebase = 100 Hs/div Delay = 400.000 s
Memory 8 = 500.0 mVolts/div Offset = -1.000 Volis
Timebase = 100 us/div Delay = 400.000 pus

Fig. 230. Transient Response of Optimization Circuit; Traces Are (Top to Bottom)
A1, Ay, A3 and Trigger Signal
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6. Oscillatory Networks

Here we will try to use the oscillatory neuron of Fig. 65 in Chapter II to build
a Hopfield and a BAM neural network using the technique shown in Chapter III,
Section E. -

When using oscillatory neurons we want a neuron to contribute to the dynamics
of the system when it is firing only. This means that if a neuron's output is non-firing
we do not want the synapses coming out from this neuron to provide any current. For
the multiplier synapses we are using, with GNDy,, = —1.00V, if their input is equal
to —1.00V then they will not have any output currents. Therefore, we need to make
our oscillatory neurons to have an output resting voltage close to —1.00V. This can
be accomplished by properly adjusting £~ in the circuit of Fig. 65 in Chapter II. The
resulting input-output behavior of the ascillatory neuron is shown in Fig. 231. Now
we are going to use this neuron to make a Hopfield and a BAM network.

a. Oscillatory Hopfield Network

The circuit of an oscillatory Hopfield network was already shown in Fig. 110 in Chap-
ter II1. In Fig. 232 we show the interconnection topology that we used in our ex-
perimental set up using the modular chips of the BAM together with the oscillatory
neurons. Since the output of the oscillatory neurons is buffered we do not have to
worry about the bidirectional nature of the weight interconnection matrix chip used.
Note in Fig. 231 that the neuron behaves equivalently to having a negative gain. This
means that the normalized weights have to be multiplied by —1. If we want to store
the pattern 10101 the corresponding normalized weight matrix with sign change is,

*}qu -1 1 —1]

It STEERRY - TU S
1 0 1 -1 1}~
-1 0 -1 1 -1]  (540)

nibrid ixlkofi Tag iy spapd oo

-1 0 -1 1 -1

=
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Fig. 231. Input Output Behavior of Oscillatory Neuron
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Fig. 232. Interconnection Topology for Oscillatory Hopfield Network

For the multipliers we used Vi, = —3.77V and

Y =-28V for wij = +1
=20V for w;=0 (5.41)

=-12V for w;=-1

Fig. 233 summarizes the stable steady states obtained for all possible input combina-
tions. The transient response of the convergence to pattern 10101 is shown in Fig. 234
to 238. Each one of them shows the input and output voltages of one of the neurons.

b. Oscillatory BAM Network

We also used this technique to build a 3 x 3 oscillatory BAM. The interconnection
strategy is shown in Fig. 239. Note that here the neurons cannot share their input
and output nodes (same as in the ocscillatory Hopfield network). Therefore the bidi-
rectional nature in the matrix chips has to be suppressed. The fact that the output of
the oscillatory neurons is buffered will take care of this. We programmed the pattern
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Input Stable Pattern
(0) 00000 01010 (10) .
(1) 00001 10101  (21)
(2) 00010 01010 (10)
(3) 00011 01010 (10}
4) 00100 10101  (21)
(5) 00101 10101 (21)
(6) 00110 01010 (10)
(7 00111 10101 (21)
(8) 01000 01010 (10)
% 01001 01010 (10)
(10) 01010 01010 (10)
(11) 01011 10101 (21)
(12) 01100 01010 (10)
(13) o1101 01010 (10)
(14) 01110 01010 (10)
(15) 01111 10101  (21)
(16) 10000 10101  (21)
(17) 10001 10101 (21)
(18) 10010 01010 (10)
19 10011 10101 (21)
(20) 10100 10101  (21)
(21) 10101 10101 (21)
(22) 10110 01010  (10)
(23) 10111 10101  (21)
(24) 11000 01010 (10)
(25) 11001 10101  (21)
(26) 11010 01010 (10)
(27) 11011 01010 (10)
(28) 11100 01010 (10)
(29) 11101 10101 (21)
(30) 11110 01010 (10)
(31) 11111 10101 (21)

Fig. 233. Measured Stable States for Oscillatory Hopfield Network Loaded with the
Pattern 10101
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1.000 Yol
2.0

110.0 avol
20.0 us/dt
0.00000 s

ta/div

div

ts/div

]

Stop

« 000000 s

Offsst = 0.000 Volts
Delay = 80.0000 us
Offest = -1.200 Volts
Delay = $0.0000 us
Delta T = 0.D00O0 s

Fig. 234. Convergence to Pattern 10101 for Oscillatory Hopfield Network; Input and

Qutput of Neuron z, are Shown
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Nesory § = 100.0 aYolte/div T Offsst = -1.000 Volts
Tischase = 20.0 va/dly Delay « 0G.0000 us
Mesory 6 = 410.0 a¥olta/div Oftset = ~730.0 aVolts
Tissbase = 20.0 us/diy Delay = 80,0000 v
Start = 000000 s Stop » (.00000 s Delta T = 0.00000 s

Fig. 235. Convergence to Pattern 10101 for Oscillatory Hopfield Network; Input and

Qutput of Neuron z; are Shown
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Memory 5 = 4.000 antsldlv M Offsst = 0,000 Volts
Tm-mﬂ%ﬁ Delay =« 80.0000 us
Nesory 6 = 130.0 aVolts/div Offsest = -1.164 Volts
Tinebase = 20.0 us/div Delay = 80,0000 us
Start = 0.00000 s Stop = 0.00000 s Delta 7 = 0.00000 s

Fig. 236. Convergence to Pattern 10101 for Oscillatory Hopfield Network; Input and

Output of Neuron z3 are Shown



266

e

Memory 5 = 100.0 aVolts/div Offset =-1.000 Voits
Timsbese = 20.0 u:‘div Delay = 30,0000 us
Mesory 6 = 120.0 avolts/div Offeet = -712.0 aVolts
Tisebase =~ 20.0 us/div Delay = 00.0000 us
Start = 000000 s Stop = 0.00000 s Delta T = 0.00000 s

Fig. 237. Convergence to Pattern 10101 for Oscillatory Hopfield Network; Input and
Output of Neuron x4 are Shown
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Offsst = 0.000 Volts
Delsy = 60.0000 us
Offset = -1.i%0 Yolts
Delsy = 80.0000 us
Delta T = 0.00000 s

Fig. 238. Convergence to Pattern 10101 for Oscillatory Hopfield Network; Input and

Qutput of Neuron z5 are Shown
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Fig. 239. Interconnection Topology for Oscillatory BAM

x1x2x3

A
(B

Y1¥2¥a
Fig. 240. Pattern to Be Stored in the Oscillatory BAM

shown in Fig. 240, which has the normalized weight matrix (with its corresponding

sign change) _ .
1 -1 14  (5.42)
~1 1 -1}

The synaptic multipliers were biased with Ve = —3.7T7TV, and their weight inputs
Y (see Fig. 140) were connected to

Y =-28V for wj;=+1

. (5.43)
Y=-12V for wi=-1
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. ¢ B!
Wemory § = 1,000 Volts/div Offset = 500.0 svolts
Tissbase = 50.0 u‘div Delsy = 200,000 us
Meaory 2 = 500.0 aVolts/div Offsst = -{.000 Yolts
Timebase = 50.0 us/div Delasy = 200.000 us

Fig. 241. Convergence to Pattern A for Oscillatory BAM Network; Input and Output
of Neuron z, are Shown

Figs. 241 to 246 show the transient response of the convergence to pattern A when
the input is A. Each figure shows the input and output voltage for one of the neurons.

B. The Learning BAM

The synaptic circuitry of the T-mode learning BAM network was already introduced
in Chapter IV and is shown in Fig. 127. As we can see each synapse possesses three
multipliers. M1 and M2 have the same circuit as the multiplier shown in Fig. 140.
M3 has the same architecture than M1 and M2 but has the geometry factors shown in
Fig. 247 in order to reduce the the time constant of the learning circuitry. QObviously,
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Fig. 242. Convergence to Pattern A for Osciillatory BAM Network; Input and Output

of Neuron z; are Shown
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Fig. 243. Convergence to Pattern A for Oscillatory BAM Network; Input and Output

of Neuron z5 are Shown
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Memory § = §.000 \!oltsldiv Offset = 500.0 mVol
Timsbase = 50.C us Deley = 200,000 us
Memory 2 = 5000 lts/div Offest = -1.000 Yolts
Timebase = Delay = 200.000 us

Fig. 244. Convergence to Pattern A for Oscillatory BAM Network; Inpui and Qutput
of Neuron y; are Shown
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“Fm"' = 500.0 aolta/div ' Gitoet = -1.000 Voits
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Memory 2« 500.0 wYolts/div Offset = -1.000 Yolts
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Fig. 245. Convergence to Pattern A for Oscillatory BAM Network; Input and Output
of Neuron y; are Shown
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Fig. 246. Convergence to Pattern A for Oscillatory BAM Network; Input and Output
of Neuron y3 are Shown
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Fig. 247. Multiplier Circuit Used for M3

we cannot connect now the GN Dy, or GN Dyotom of all three multipliers to the same
voltage. The optimum values, in order to maximize the linear ranges of all multipliers,
were found to be such that the quiescent voltage levels of z;, y; and wy;; are,

quiescent voltage for z;: —2.0V
quiescent voliage for y; : 0.0V (5.44)

quiescent voltage for w;; : —1.0V

This implies using the ground voltages shown in Fig. 248.

In what follows we are going to explain the experimental results obtained when
characterizing the refreshing circuit for the analog memory, the learning circuit used
to generate the synaptic weight values, and the whole system working as an adaptive
associative memory.

As we will see later, we have fabricated an adaptive synaptic 5 x 9 matrix chip.
This chip is going to be a modular component of an adaptive BAM, using a similar
interconnection topology as shown in Fig. 148. The chips we will use for the input
current sources and the nonlinear resistors are the same we have used for the pro-
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Fig. 248. Ground Bias Voltages for the Three Synaptic Multipliers

grammable neural networks seen so far. On a different chip we put an independent
synaptic circuit for test and characterization purposes.

1. The Refreshing Circuit

The refreshing circuit, shown again in Fig. 249, is responsible for maintaining the
voltage in capacitor C,, within a certain interval. There are two D-flip-flops per
synapse. If the chip has 9 x 5 = 45 synapses then the flip-flops will form a 90-bits
shift register. In this shift register all bits are zero except one, so that at a given time
only the switches MS1/MS2 or MS3 of one single synapse will be on. The reason
for this is to have only one A/D-D/A pair per chip. _

In order to test and characterize the refreshing circuit we will first test the shift
registers. After this we will test the refreshing action by connecting a constant voltage
source at Vyromapa (see Fig. 249) and look at Vi,4pa and w. This will allow us
to measure the leakage rate at C,, as a function of w. After this we will test the
ADA (Analog to Digital to Analog) converter circuit, and finally we will look at the
complete refreshing circuit.

a. Test of Shift Registers

The circuit used for the D-flip-flops is shown in Fig. 250. This circuit needs to be
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Fig. 249. Synaptic Weight Refreshing Circuit for Adaptive BAM
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Fig. 250. Circuit Diagram of D-Flip-Flop
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CLK2

CLK1

Vsqm _ Vel ay

(@) L L

. Fig.251. (a) Circuit for Clock Signals Generation, (b) Waveforms
controlled by two nonoverlapping clock signals. These clock signals were generated
from a square wave signal by using the circuit of Fig. 251, which was built off-chip.
For the synapse that was fabricated independently on a separate chip we had access to
the input V;, (which is the input ‘from previous synapse’ in Fig. 249) and could look
at the voltages V;; and V,q. Since only one of the D-flip-flops may be storing a ‘1’, we
used the externally connected circuit shown in Fig. 252 to generate an adequate Vi,
signal. The corresponding measured results are shown in Figs. 253 and 254. Fig. 253
shows the waveforms for Viguare, CLK1, CLK2 and V,,, while Fig. 254 does it for
Viquares Vins Vo1 and Vyz. In order to test that the traveling ‘1’ inside the shift register
is not degraded in a long chain of D-flip-flops we connected them in the way shown
in Fig. 255, where the Input Generator is the circuit of Fig. 252. If switch SW1
is set to position ‘1’ we obtain the results of Figs. 253 and 254. If switch SW1 is
changed to position ‘2* while either ¥,y or V,; is ‘1’, then a ‘1’ will be trapped in the
2 D-flip-flop loop. If this ‘1’ does not vanish then we can connect in series as many of
these d-flip-flops as we want. The ‘1’ did not vanish, and this is shown in Fig. 256.
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Fig. 952. (a.) Circuit for Input Signal Generatio.n', (b) Waveforms
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Memory 5 = 10.00 Volts/div Offset = -1.000 Volts
Timebase = 100 ps/div Delay = -200.000 ps
Memory 6 = 10.00 Volts/div Offset = -1.000 Volts
Timebase = 100 Ws/div Delay = -200.000 pus
Memory 7 = 10.00 Volts/div Offset = -1.000 Volts
Timebase = 100 ps/div Delay = -200.000 ps
Memory 8 = 10.00 Volts/div Offset = -1.000 Volts
Timebase = 100 ps/div Delay = -200.000 s

Fig. 253. Measured Waveforms for Shift Registers (Top to Bottom): Vigyare, CLK1,
CLK?2, Vip
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Memory 5 = 10.00 Volts/div Offset = -1.000 Volts
Timebase = 200 ps/div Delay = -200.000 ps
Memory 6 = 10.00 Volts/div Offset = -1.000 Volts
Timebase = 200 Hs/div Delay = -200000 pus
Memory 7 = 10.00 Volts/div Offset = -1.000 Volts
Timebase = 200 ps/div Delay = -200.000 us
Memory 8 = 10.00 Volts/div Offset = -1.000 Voits
Timebase = 200 ps/div Delay = -200.000 us

Fig. 254. Measured Waveforms for Shift Registers (Top to Bottom):

Voo

I/square y V;n. » 1/ol 1
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Input -
Generator

Fig. 255. Set Up for Shift Registers Test

b. Test of Refreshing Action

In order to test the refreshing action we made the interconnections shown in Fig. 257,
where Vis is an external DC voltage source. Figs. 258 to 260 show the measured _
waveforms for Vi1, Viz, w and Vieapa for different values of V4. Signals Vi and V,
were obtained by setting switch SW1 in Fig. 255 to position ‘1°.
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Memory 5 = 10.00 Volts/div = ' Offset = -1.000 Voits
Timebase = 100 us/div Delay = -200000 s
Memory 6 = 10.00  Volts/div Offset = -1.000 Volts
Timebase = 100 ps/div Delay = -200.000 us
Memory 7 = 10.00 Volts/div Offset = -1.000 Volts
Timebase = 100 us/div Delay = -200.000 s
Memory § = 10.00 Volts/div Offset = -1.000 Volts
Timebase = 100 Hs/div Delay = -200.000 s
Fig. 256. Two D-Flip-Flops Loop with a ‘1’ Trapped Inside; Top to Bottom: CLKI,
CLK2, Vp5, Vo
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Fig. 257. Topology Used for Test of Refreshing Action
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Memory 5 = 200.0 mVolts/div Offset = -500.0 mVolts
Timebase = 250 pLs/div Delay = -200.000 pus
Memory 6 = 200.0 mVolis/div Offset = -500.0 mVolts
Timebase = 250 ps/div Delay = -200.000 us
Memory 7 = 10.00 Volts/div Offset = 0.000 Volts
Timebase = 250 us/div Delay = -196.000 us
Memory 8 = 10.00 Volts/div Offset = -1.000 Volts
Timebase = 250 Ms/div Delay = -196.000 us

Fig. 258. Refreshing Action for Vi = —0.50V; Top to Bottom:

1, VieaDa, Voiy Yoz
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Memory 5 = 200.0 mVolts/div Offset = -1.000 Volis
Timebase = 250 Hs/div Delay = -196.000 s
Memory 6 = 200.0 mVolts/div Offset = -1.000 Volts
Timebase = 250 ps/div Delay = -200.000 pus
Memory 7 = 10.00 Volts/div Offset = 0.000 Volts
Timebase = 250 ps/div Delay = -196.000 us
Memory 8 = 10.00 Volts/div Offset = -1.000 Volts
Timebase = 250 ps/div Delay = -196.000 ps

Fig. 259. Refreshing Action for Viy = —1.00V; Top to Bottom: w, Vioapa, Vor, Vor
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Memory § = 200.0 mVolts/div Offset = -1.500 Volts
Timebase = 250 ps/div Delay = -200.000 us
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Fig. 260. Refreshing Action for Vay = —1.50V; Top to Bottom: w, Vioapa, Vor, Vez

In order to measure the leakage at capacitor C,, we reduced drastically the fre-
quency of the refreshing cycle. We used for V,guqre in Figs. 251 and 252 a clock signal
of 6Hz, and looked at w for different values of Vas. The corresponding responses are
shown in Figs. 261 to 265. These figures allow us to measure the leakage rate as a
function of Vi, which is depicted in Fig. 266.
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Timebase = 400 ms/div Delay = -200.000 ms

Fig. 261. Measurement of Leakage Rate for Vas = —0.50V
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Ch. 1 = 100.0 mVolts/div Offset = -750.0 mVolts
Ch. 2 = 5.000 Volts/div Offset = -1.000 Volts
Timebase = 400 ms/div Delay = -200.000 ms

Fig. 262. Measurement of Leakage Rate for VY = —0.75V

c. Test of ADA

The circuit used for the ADA {Analog-Digital-Analog) converter was shown in Fig. 108
in Chapter IIL Its Silicon area is about 400 x 500um?. The resistors where imple-
mented with lines of polysilicon and the circuit used for the comparators is shown in
Fig. 267. The DC transfer curve of the ADA converter is shown in Fig. 268 3. If we
number the seven DC output levels of the ADA converter ‘0’ to ‘6’ (bottom to top),

5The reader will note that from now on we are using photographs to show the
results on the oscilloscope screen, instead of the plotter plots used so far. The reason
is that on June 5, 1991 our nice digital oscilloscope HP54111A was usurped from our
laboratory by another research group due to strange and obscure legal reasons.
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Fig. 263. Measurement of Leakage Rate for V¢ = ~1.00V
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Fig. 264. Measurement of Leakage Rate for Vs = —1.25V
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Timebase = 400 ms/div Delay = -200.000 ms

Fig. 265. Measurement of Leakage Rate for Vay = —1.50V



mV/s

292

1o r - r

Leakage Rate —-—

L1 of -
SE. e E
50 r “
sk . -
40 -
35 o - h A d.

~-1.6 -1.4 -1.2 -1 -0.4 -0.6 .-0.4

Volts

Fig. 266. Plot of Leakage Rate As a Function of the Capacitor Voltage

Fig. 267. Circuit Diagram of Comparator Used in ADA Converter
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Fig. 268. Measured DC Transfer Curve of ADA Converter; Horizontal and Vertical
Scales are 200mV/div, and Center is (—1.0V, —1.0V)

the transient responses from level ‘0’ to each one of the other six levels are shown in
Figs. 269 to 274. Note that the settling time is always less than 400ns.

d. Test of Complete Refreshing Circuit

In order to test the complete refreshing circuit we used a chip with a 5 x 9 adaptive
synaptic array. Asshown schematically in Fig. 275 we have access to the shift registers
input in synapse (11) and we can look at the shift registers output coming out of
synapse (9%), as well as at the weight voltage of synapse (15) wys. The input signal
to the shift registers was generated by a circuit similar to the one shown in Fig. 252,
but that uses 8 D-flip-flops instead of 3.

Fig. 276 shows 2 multiple exposure photograph of the oscilloscope screen. The
time scale was 5ms/div. The top trace is the shift registers output coming out
of synapse (95), at a scale of 10V/div (its bottom is at —5.0V}. The seven lower
traces show seven different traces for w,s. Each trace corresponds to one of the
DC output levels of the ADA converter shown in Fig. 268. The vertical scale used
for these traces is 200mV/div with offsét value —1.00V. Note that in Fig. 268 the
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Fig. 269. ADA Transition from Level "0" to Level ‘1’; Top Trace Is Input (500mV/div),
Bottom Trace Is OQutput (200mV/div, Offset Is —800mV); Time Scale Is 200ns/div
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Fig. 270. ADA Transition from Level ‘0’ to Level ‘2’; Top Trace Is Input (S00mV/div),
Bottom Trace Is Output (200mV/div, Offset Is —800mV); Time Scale Is 200xs/div
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Fig. 271. ADA Transition from Level ‘0’ to Level ‘3’; Top Trace Is Input (500mVidiv),
Bottom Trace Is Output (200mVidiv, Offset Is ~800mV); Time Scale Is 200ns/div
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Fig. 272. ADA Transition from Level ‘0’ to Level ‘4’; Top Trace Is Input (500mV/div),
Bottom Trace Is Qutput (200mV/div, Offset Is —800mV); Time Scale Is 200as/div
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Fig. 273. ADA Transition from Level ‘0’ to Level ‘5*; Top Trace Is Input (500mVidiv),
Bottom Trace Is Output (200mV/div, Offset Is —800mV), Time Scale Is 200ns/div



299

Fig. 274. ADA Transition from Level ‘0’ to Level ‘6’; Top Trace Is Input (500mV/div),
Bottom Trace Is Output (200mV/div, Offset Is —800mV); Time Scale Is 200as/div
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Fig. 275. Schematic Illustration of 5 X 9 Adaptive Synapse Matrix Chip
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Fig. 276. Experimental Performance of Refreshing Circuit; Time Scale Is 5mV/div,
Scale for Top Trace Is 10V/div, Scale for the Seven Bottom Traces Is
200mV/div with Offset —1.00V

DC output levels of the ADA converter were {—0.40V, —0.60V, —0.80V, ~1.00V,
-1.20V, —1.40V, —1.60V}. However, in Fig. 276 we see that the complete refreshing
circuit will discretize the weight voltage to the levels {—0.48V, —0.60V, —0.80V,
-1.00V, —1.20V, ~1.40V, —1.60V'}. The reason for this is that there is an upper
limit for the voltage w;; this circuit can refresh. This limit is given by the maximum
drain or source voltage transistors M52, M1, M2 and M3 in Fig. 257 can tolerate
to work properly. ' '

e. A Comment on Spice Simulations

When simulating the refreshing circuit in Spice using the regular MOSFETs LEVEL
2 model provided by MOSIS, the result shown in Fig. 277 is obtained for the voltage
at capacitor C, (see Fig. 257). The weight voltage has a ripple of about 5mV in
the steady state. However, by looking at Figs. 276 and 258-260 we can see that
this variation is between 40mV and 100mV. This is because of the poor modeling
of the distributed channel capacitance in the switch transistors. However, Spice
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Fig. 277. Regular Spice Simulation of Refreshing Circuit

can be fooled if we split transistors M1 and M3 in Fig. 257 into 10 small ones
along their longitudinal dimension ®, as is shown in Fig. 278. The corresponding
simulation result is shown in Fig. 279, and we can see that in the steady state the
variation in weight voltage is around 40mV, which is much closer to what was observed

experimentally.

8The model for these small transistors needs to be changed so that Spice does
not compensate for variations in L. For this make DEL=0, LMLT=1.0, XL=0 and

LREF=0 in the LEVEL 2 HSpice model.
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Fig. 280. Learning Circuit Diagram

2. The Learning Circuit

The part of the synapse that we call learning circuit is shown in Fig. 280. Note
that now €, = +5V, so that capacitor C, is part of the learning circuit, instead of
the refreshing circuit. Also note that the negative input to the differential amplifier
is connected to —1.00V (compare to Fig. 127 in Chapter IV). This is because the
quiescent voltage for the weight is now —1.00V (see equations (5.44)).

The training is performed by connecting the patterns to be programmed sequen-
tially and periodically to the input current sources of the two BAM layers. This is
schematically illustrated in Fig. 281. In order to test the proper operation of the
learning circuit we used the independent synapse fabricated on the separate chip. We
connected the corresponding two input current sources so that z; = —2.50V" (low) and
y; would oscillate between its maximum (y; = +0.50V') and minimum (y; = —0.50V')
value. Figs. 282 to 288 show the evolution of the weight w;; depending on the fre-
quency of the input signals and their duty cycle. In all these photographs the top
trace is the input signal to the current source of node y;, with scale 5V/div. The
‘bottom trace shows the weight voltage w;; with scale 0.5V/div and offset —0.5V (re-
member that the valid voltage range for w;; is from —1.5V to —0.5V'). In Fig. 282
the time scale is 20us/div and the frequency for y; is 10K Hz with 50% duty cycle.
In Figs. 283 to 288 the time scale will be 5us/div. Fig. 283 shows the case when the
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Fig. 282. Learning Circuit with 10KHz, 50% Duty Cycle Training Signal; Time
Scale Is 20uV/div, Top Trace Scale Is 5V/div, Bottom Trace Scale and
Offset Are 0.5V/div and —0.5V, Respectively

frequency for y; is 100K Hz at 50% duty cycle. Fig. 284 is for 500K Hz and 50% duty
cycle. For this frequency the ripple in the weight is acceptable for the resolution we
need (remember we have seven discrete steps in the weight range for our refreshing
circuit). Therefore, 500K Hz is an acceptable training frequency for our circuit. In
Figs. 285 to 288 we change the duty cycle of the y; training signal. This represents
the cases for which there is a different number of ‘1s’ and ‘0s’ in bit y; of the actual
training patterns. Fig. 285 shows the case of a 1% duty cycle, Fig. 286 for 25%,
Fig. 287 for 75% and Fig. 288 for 99%.

3. Associative Memory Implementation Example

Now that we have tested independently the refreshing and the learning circuits of the
adaptive synapses we can use them to build a complete adaptive BAM network. The
arrangement of the modular components is as shown in Fig. 281. First we loaded a
single pattern so that all external inputs to layers 1 and 2 were maintained constant.
The pattern we connected to the adaptive BAM network is shown in Fig. 289, Once
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Fig. 283. Learning Circuit with 100KHz, 50% Duty Cycle Training Signal; Time
Scale Is 200V/idiv, Top Trace Scale Is 5Vidiv, Bottom Trace Scale and
Offset Are 0.5V/div and —0.5V, Respectively
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Fig. 287. Learning Circuit with 500KHz, 75% Duty Cycle Training Signal; Time
Scale Is 20uV/div, Top Trace Scale Is S5Vidiv, Bottom Trace Scale and
Offset Are 0.5V/div and —0.5V, Respectively
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Fig. 288. Learning Circuit with S00KHz, 99% Duty Cycle Training Signal; Time
Scale Is 20uVidiv, Top Trace Scale Is 5V/div, Bottom Trace Scale and
Offset Are 0.5V/div and —0.5V, Respectively
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Fig. 289. Single Pattern to Be Stored in the Adaptive BAM
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Fig. 290. Convergence to Pattern A with 1 Stored Pattern; Top Trace Is Trigger
Signal (10V/div), Bottom Traces Are Neuron Outputs x; (200mV/div, Offset

—2.00V), Time Scale Is 200 us/div

the pattern was loaded we switched the control input ¢; from +5V to —5V (see
Fig. 280) so that the weight capacitors were connected to their refreshing circuits.
Now the weights are stored and being updated for all synapses, and the BAM can
be tested in the same way we tested the programmable BAMs in Section A. We had
switches connected to all neurons z; off layer 1, in order to impose initial conditions
to the STM. The neurons of layer 2 y; were left free. Fig. 290 shows a multiple
exposure photograph in which we can see the 9 z; neuron outputs while the BAM is
converging to pattern A of Fig. 289. The convergence occurs in about 1.0us and the
input pattern was A. The top trace is the trigger signal for the switches that set the
initial conditions for all ;. '

We also tried to load the two patterns shown in Fig. 291. Ounce the BAM was
trained and the patterns were loaded and being refreshed we checked the BAM for
proper retrieval of the two patterns. This is shown in Figs. 292 and 293. Fig. 292
shows the convergence to pattern 4 in 1.6x8 when the input pattern is A. Fig. 293

shows the convergence to pattern B in 1.2us when the input is B.
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Fig. 292. Convergence to Pattern A with 2 Stored Patterns; Top Trace Is Trigger
Signal (10V/div), Bottom Traces Are Neuron OQutputs x; (200mV/div, Offset

—2.00V), Time Scale Is 200us/div
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Fig. 293. Convergence to Pattern B with 2 Stored Patterns; Top Trace Is Trigger
Signal (10V/div), Bottom Traces Are Neuron Outputs x; (200mVidiv, Offset

—2.00V), Time Scale Is 200us/div
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C. Conclusions

The results presented in this Chapter represent the core of the contributions of this
Dissertation. We have first tested the proper operation of the STM section of several
programmable T-mode neural network implementations: BAM networks, Hopfield
network, simplified Grossberg network, quadratic constrained optimization network,
and oscillatory networks. Then we have turned our attention to the most important
issues of hardware neural network implementations: learning and memory. We have
fully tested an adaptive BAM network of size 5 x 9. First we demonstrated proper
operation of the memory refreshing circuit and of the learning circuit for a single
synapse fabricated independently on a separate chip. Then we tested the complete
adaptive 5 x 9 BAM network by training it with up to two patterns and showing the
proper retrieval of these patterns. '
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CHAPTER VI

CONCLUSIONS AND FUTURE WORK
The contribution of this Dissertation consists in demonstrating that the fully ana-
log VLSI realization of adaptive neural network systems is viable. This has been
accomplished in several steps.

The first step is the introduction of the T-mode (Transconductance-mode) circuit
design technique for use in neural networks hardware implementations.

The second step consists of the use of the T-mode technique to build and test
several programmable neural network systems. The programmable systems that have
been implemented are BAM networks, a Hopfield network, a Winner-Take-All net-
work, a simplified Grossberg network, a second order Constrained Optimization net-
work, and oscillatory versions of a BAM and a Hopfield network.

The third step is the implementation and test of a complete learning T-mode
BAM system with on chip dynamic analog memory.

During the research work we have done for this Dissertation some ideas have
come up that could imply some improvements of the circuits seen in here. The first
change that should be introduced is the replacement of all switches in the refreshing
circuit by transmission gates. This would enhance the dynamic range of the refreshing
as well as reduce the clock feedthrough. Also we have noticed that in the learning
circuit (see Fig. 280) the circuitry that emulates the resistor is very noisy and hard to
bias. This is a critical component of the complete system and needs to be improved
in order to increase the reliability of the overall system.

These would be short term improvements. For a longer term range more drastical
changes can be introduced. One of them could be the replacement of the D-flip-flop
chain by CCD devices, in order to reduce area, or the use of some other nonrefreshing
analog memory, such as the floating gate technique. Actually, the use of floating
gate memories would suggest to change the continuous time dynamics of our BAM
to some kind of pulse-stream dynamics, so that the floating gate transistors can be
easily programmed. Another interesting project that would be very illuminating is
to interface the neural network to a conventional computer so that the input output
behavior of the system can be fully and systematically analized, and the properties of
the algorithms themselves can be studied. Other interesting research projects are to
investigate the limitations of the proposed circuit implementation. How large can a
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system be made? What limits its size? What is the effect of systematic nonidealities?
How can they be canceled?

The field of neural networks hardware implementations is without any doubt
very vast and completely open at this moment. Our contribution to this field is
almost insignificant, in the sense that we only have proposed an apparently viable
implementation technique. It remains now to evaluate this technique with respect to
others and analyze its limitations and advantages for potential applications.
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