Circuit Analysis and Synthesis

Telecommunication Engineering (3rd Year) Fall Term 2004/05
Departamento de Electrónica y Electromagnetismo
Escuela Superior de Ingenieros. Universidad de Sevilla

A) Instructors:

Group I: Óscar Guerra Vinuesa <guerra@imse.cnm.es>
Room: E2-SO-EE-08 (ESI) Tel.: 954-487378

Group II: Ricardo Carmona Galán <rcarmona@imse.cnm.es>
Room: E2-SO-EE-08 (ESI) Tel.: 954-487380

Group III: Rafael Domínguez Castro <rafael@imse.cnm.es>
Room: E2-SO-EE-08 (ESI) Tel.: 954-487379

Class hours:

Group I: Tue. 15:30-17:00 / Thu. 17:45-18:45 / Fri. 19:30-21:00
(Lectures in Spanish)

Group II: Tue. 17:15-18:45 / Wed. 19:30-20:30 / Fri. 15:30-17:00
(Lectures in English)

Group III: Mon. 15:30-17:00 / Wed. 17:45-18:45 / Thu. 15:30-17:00
(Lectures in Spanish)

Office hours:

Group I: Tue. 9:00-12:00 / Thu. 9:00-12:00

Group II: Tue. 9:00-12:00 / Wed. 16:30-19:30

Group III: Mon. 16:00-19:00 / Tue. 16:00-19:00

B) Web page

http://www.imse.cnm.es/elec_es/assignat/ASC/index_en.html

C) Objectives

Learning to analyze and design electronic circuits with passive and active elements. Mastering the realization of continuous-time analog filters.

D) Lectures

1. Continuous-time LTI circuit response and representation
 1.1 Circuit analysis and synthesis
 1.2 Classification
 1.3 I/O representation in LTI systems
 1.4 Zero-input and zero-state responses
 1.5 Natural and forced responses
 1.6 Poles and zeros of the transfer function. Stability
1.7 Sinusoidal steady-state response

2. **Filter design fundamentals**
 2.1 Filters: concept and specifications
 2.2 Normalization
 2.3 Filter classification
 2.4 Filter sensitivity

3. **Filter approximation**
 3.1 Approximation theory
 3.2 Lowpass magnitude approximation
 3.3 Maximally flat approximation
 3.4 Butterworth's filter
 3.5 Chebyshev's filter
 3.6 Inverse Chebyshev filter
 3.7 Elliptic (Cauer's) filter
 3.8 Bessel's filter
 3.9 Frequency transformations

4. **Passive filter synthesis**
 4.1 Introduction
 4.2 Passive oneport network synthesis
 4.3 Partial pole removal
 4.4 Passive twoport networks
 4.5 LC ladder synthesis
 4.6 LC all-pass filters

5. **Active filter synthesis: biquads**
 5.1 Introduction
 5.2 Single-amplifier biquads
 5.3 Passive RC circuits
 5.4 Multi-amplifier biquads

6. **Active filter synthesis: high order filters**
 6.1 Introduction
 6.2 Cascaded realization
 6.3 Multiple-feedback realization
 6.4 LC ladder simulation
 6.5 Inductance substitution

7. **Monolithic realization of continuous-time active filters**
 7.1 Introduction
 7.2 MOSFET-C filters
 7.3 Gm-C filters
 7.4 Automatic frequency tuning in IC's

Appendix 1. The operational amplifier
 A1.1 Poles and zeros introduction by controlled sources
 A1.2 The ideal OPAMP
 A1.3 Non-ideal operation: static limitations
 A1.4 Non-ideal operation: dynamic limitations
 A1.5 The operational transconductance amplifier

Appendix 2. Active circuit building blocks
 A2.1 Amplifiers/adders
 A2.2 Integrators
 A2.3 Gyrators
 A2.4 Inmittance converters
 A2.5 Building blocks with OTA's

E) Prerequisites
 Basic circuit theory.
F) Assessment
 Written final exam.
 Personal circuit design exercises.

G) Methodology
 4 hours/week classroom lectures in the blackboard.
 Printed materials at the copy room.
 Materials at the web page.
 6 hours/week tutorial sessions.
 Practical exercises for homework.

H) Bibliography
 • Lindquist, ACTIVE NETWORK DESIGN WITH SIGNAL FILTERING APPLICATIONS. Steward & Sons, 1977 ISBN: 0917144015