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(57) ABSTRACT

A neuron circuit performing synapse learning on weight
values includes a first sub-circuit, a second sub-circuit, and
a third sub-circuit. The first sub-circuit is configured to
receive an input signal from a pre-synaptic neuron circuit
and determine whether the received input signal is an active
signal having an active synapse value. The second sub-
circuit is configured to compare a first cumulative reception
counter of active input signals with a learning threshold
value based on results of the determination. The third
sub-circuit is configured to perform a potentiating learning
process based on a first probability value to set a synaptic
weight value of at least one previously received input signal
to an active value, upon the first cumulative reception
counter reaching the learning threshold value, and perform
a depressing learning process based on a second probability
value to set each of the synaptic weight values to an inactive
value.
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FIG. 11
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— 1110
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WITH LEARNING THRESHOLD VALUE — 1120
ACCORDING TO RESULTS OF DETERMINATION
WHEN FIRST CUMULATIVE NUMBER OF TIMES OF
RECEPTION OF ACTIVE INPUT SIGNALS REACHES
LEARNING THRESHOLD VALUE, PERFORM POTENTIATING | .

LEARNING PROCESS ACCORDING TO FIRST PROBABILITY
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PERFORM DEPRESSING LEARNING PROCESS
ACCORDING OT SECOND PROBABILITY TO SET EACH ~ |—1140
OF SYNAPTIC WEIGHT VALUES TO INACTIVE VALUE
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NEURON CIRCUIT, SYSTEM, AND METHOD
WITH SYNAPSE WEIGHT LEARNING

CROSS-REFERENCE TO RELATED
APPLICATION

[0001] This application claims the benefit of U.S. Provi-
sional Application No. 62/581,957, filed on Nov. 6, 2017, in
the United States Patent and Trademark Office, and Korean
Patent Application No. 10-2018-0069625, filed on Jun. 18,
2018, in the Korean Intellectual Property Office the disclo-
sure of which is incorporated herein in its entirety by
reference.

BACKGROUND

1. Field

[0002] The present disclosure relates to a neuron circuit,
system, and method with synapse weight learning.

2. Description of the Related Art

[0003] An artificial neural network refers to a computing
device or the like in which artificial neurons or artificial
neuron models are connected to one other.

[0004] Also, techniques such as a convolution neural
network and a recursive neural network have been proposed
as artificial neural network approaches. Moreover, a spiking
neural network (SNN) approach has been proposed.
[0005] Unlike existing methods, the SNN may have a
structure optimized for learning dynamic features, and com-
binational hardware and software methods and hardware
only methods have been proposed to implement such SNN.
[0006] However, the existing methods require excessive
amounts of calculations, thereby limiting the speed at which
learning can be mimicked and, thus, accumulatively
decreasing the speed at which learning can be mimicked in
a higher layer. In addition, since the existing methods adopt
an existing deterministic method, a relatively large amount
of memory is required for storing synaptic weight values,
which highly increases the costs for implementing systems
based on these methods.

SUMMARY

[0007] This Summary is provided to introduce a selection
of concepts in a simplified form that are further described
below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the
claimed subject matter, nor is it intended to be used as an aid
in determining the scope of the claimed subject matter.

[0008] In one general aspect, a neuron circuit performing
synapse learning on a plurality of synaptic weight values
includes a first sub-circuit, a second sub-circuit, and a third
sub-circuit. The first sub-circuit is configured to receive an
input signal from a pre-synaptic neuron circuit and deter-
mine whether the received input signal is an active signal
having an active synapse value. The second sub-circuit is
configured to compare a first cumulative reception counter
of active input signals with a learning threshold value based
on results of the determination. The third sub-circuit is
configured to perform a potentiating learning process based
on a first probability value to set a synaptic weight value of
at least one previously received input signal to an active
value, upon the first cumulative reception counter reaching
the learning threshold value, and perform a depressing
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learning process based on a second probability value to set
each of the plurality of synaptic weight values to an inactive
value.

[0009] The neuron circuit may further include a fourth
sub-circuit configured to compare a second cumulative
reception counter of the active input signals with a firing
threshold value based on the results of the determination.
Upon the second cumulative reception counter reaching the
firing threshold value, the fourth sub-circuit transmits a
spike signal to a post-synaptic neuron circuit of the neuron
circuit.

[0010] A synaptic weight memory may be configured to
store the plurality of synaptic weight values.

[0011] The third sub-circuit may be configured to deter-
mine the second probability value based on a number of
active synapses having active synaptic weight values in the
synaptic weight memory as a result of the potentiating
learning process.

[0012] The second sub-circuit may include a learning
counter configured to count the first cumulative reception
counter, the learning counter being reset upon the first
cumulative reception counter reaching the learning thresh-
old value.

[0013] The second sub-circuit may further include a learn-
ing threshold counter configured to count the learning
threshold value, the learning threshold value being increased
upon the first cumulative reception counter reaching the
learning threshold value.

[0014] The fourth sub-circuit may include a firing counter
configured to count the second cumulative reception coun-
ter, the firing counter being reset upon the second cumulative
reception counter reaching the firing threshold value.
[0015] The third sub-circuit may include a random con-
stant generator, and upon a positive random constant
acquired from the random constant generator being equal to
or less than a potentiating learning reference constant cal-
culated by multiplying an upper limit of the positive random
constant by the first probability value, the third sub-circuit
performs the potentiating learning process.

[0016] When the positive random constant acquired from
the random constant generator is equal to or greater than a
depressing leaning reference constant calculated by multi-
plying the upper limit of the positive random constant by the
second probability value, the third sub-circuit may perform
the depressing leaning process on each of the plurality of
synaptic weight values in the synaptic weight memory.
[0017] The third sub-circuit may include an input event
buffer storing synapse information contained in received
input signals, and the third sub-circuit may be configured to
perform the potentiating learning process on synaptic weight
values respectively corresponding to a preset number of
pieces of the synapse information stored in the input event
buffer in a reverse order to an order in which the pieces of
synapse information are stored.

[0018] In another general aspect, a learning system for a
plurality of synaptic weight values includes a learning
circuit and a neuron circuit. The neuron circuit is configured
to receive an input signal from a pre-synaptic neuron circuit
and determine whether the received input signal is an active
signal having an active synapse value, and upon a first
cumulative reception counter of active input signals reach-
ing a learning threshold value, the neuron circuit transmit-
ting a learning request signal to the learning circuit. As the
learning circuit receives the learning request signal, the
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learning circuit performs a potentiating learning process
based on a first probability value to set a synaptic weight
value of at least one input signal previously received by the
neuron circuit to an active value, and the learning circuit
performs a depressing learning process based on a second
probability value to set each of the plurality of synaptic
weight values to an inactive value.

[0019] In another general aspect, a learning method for a
neuron circuit to learn a plurality of synaptic weight values
between the neuron circuit and a pre-synaptic neuron circuit,
the learning method includes: as an input signal is received
from the pre-synaptic neuron circuit, determining whether
the received input signal is an active signal having an active
synapse value; comparing a first cumulative reception coun-
ter of active input signals with a learning threshold value
based on results of the determination; when the first cumu-
lative reception counter reaches the learning threshold value,
performing a potentiating learning process based on a first
probability value to set a synaptic weight value of at least
one previously received input signal to an active value; and
performing a depressing learning process based on a second
probability value to set each of the plurality of synaptic
weight values 1o an inactive value.

[0020] The learning method may further include: compar-
ing a second cumulative reception counter of active input
signals with a firing threshold value based on results of the
determination; and when the second cumulative reception
counter reaches the firing threshold value, transmitting a
spike signal to a post-synaptic neuron circuit of the neuron
circuit.

[0021] The depressing learning process may include deter-
mining a number of active synapses having active synaptic
weight values among a plurality of synapses as a result of the
potentiating learning process, and determining the second
probability value based on the determined number of active
synapses.

[0022] The learning method may further include: initial-
izing the first cumulative reception counter when the first
cumulative reception counter reaches the learning threshold
value.

[0023] The learning method may further include: increas-
ing the learning threshold value when the first cumulative
reception counter reaches the learning threshold value.
[0024] The learning method may further include: initial-
izing the second cumulative reception counter when the
second cumulative reception counter reaches the firing
threshold value.

[0025] The potentiating learning process may include
acquiring a positive random constant and performing the
potentiating learning process when the acquired random
constant is equal to or less than a potentiating learning
reference constant calculated by multiplying an upper limit
of the random constant by the first probability value.
[0026] The potentiating learning process may include
acquiring a positive random constant for each of the plural-
ity of synaptic weight values and performing the potentiat-
ing learning process on each of the plurality of synaptic
weight values when the acquired random constant is equal to
or greater than a depressing learning reference constant
calculated by multiplying an upper limit of the random
constant by the second probability value.

[0027] The learning method may further include storing
synapse information contained in received input signals,
wherein the potentiating learning process comprises per-

May 9, 2019

forming a potentiating learning process on synaptic weight
values respectively corresponding to a preset number of
pieces of previously stored synapse information in reverse
order to an order in which the pieces of synapse information
are stored.

[0028] A computer-readable recording medium may store
a program for performing the learning method using a
computer.

[0029] Other features and aspects will be apparent from
the following detailed description, the drawings, and the
claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0030] FIGS.1Ato 1C are views schematically illustrating
examples of a spiking neural network (SNN).

[0031] FIGS. 2A to 2D are views illustrating examples of
time-dependent spike-timing-dependent plasticity (STDP)
learning functions.

[0032] FIGS. 3Ato 3D are views illustrating examples of
order-dependent STDP learning functions.

[0033] FIG. 4 is a view illustrating an example of a kernel
function.

[0034] FIG. 5is a view illustrating an example of an SNN
layer population.

[0035] FIG. 6is a block diagram illustrating an example of
a neuron circuit.

[0036] FIG. 7is ablock diagram illustrating an example of
a neuron circuit.

[0037] FIG. 8 is a view illustrating an example of a
synapse weight learning system.

[0038] FIG. 9 is a view illustrating an example of a
synapse weight learning system for a plurality of neuron
circuits.

[0039] FIG. 10 is a view illustrating an example of a
learning system for hierarchical neuron circuit populations.
[0040] FIG. 11 is a flowchart illustrating an example of a
synapse weight learning method for a neuron circuit.
[0041] FIG. 12 is a view illustrating an example of a
neuron block scheme for implementing a neuron circuit.
[0042] FIG. 13 is a view illustrating an example of an
STDP learning block scheme for implementing a learning
circuit.

[0043] FIG. 14 is a view illustrating an example of a
single-core block scheme for implementing a single-core
circuit including a plurality of neuron circuits.

[0044] FIG. 15 is a view illustrating an example of a
multi-core block including a plurality of single-core blocks.
[0045] Throughout the drawings and the detailed descrip-
tion, the same reference numerals refer to the same ele-
ments. The drawings may not be to scale, and the relative
size, proportions, and depiction of elements in the drawings
may be exaggerated for clarity, illustration, and conve-
nience.

DETAILED DESCRIPTION

[0046] The following detailed description is provided to
assist the reader in gaining a comprehensive understanding
of the methods, apparatuses, and/or systems described
herein. However, various changes, modifications, and
equivalents of the methods, apparatuses, and/or systems
described herein will be apparent after an understanding of
the disclosure of this application. For example, the
sequences of operations described herein are merely
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examples, and are not limited to those set forth herein, but
may be changed as will be apparent after an understanding
of the disclosure of this application, with the exception of
operations necessarily occurring in a certain order. Also,
descriptions of features that are known in the art may be
omitted for increased clarity and conciseness.

[0047] The terminology used herein is for describing
various examples only, and is not to be used to limit the
disclosure. The articles “a,” “an,” and “the” are intended to
include the plural forms as well, unless the context clearly
indicates otherwise. The terms “comprises,” “includes,” and
“has” specify the presence of stated features, numbers,
operations, members, elements, and/or combinations
thereof, but do not preclude the presence or addition of one
or more other features, numbers, operations, members, ele-
ments, and/or combinations thereof.

[0048] The features described herein may be embodied in
different forms, and are not to be construed as being limited
to the examples described herein. Rather, the examples
described herein have been provided merely to illustrate
some of the many possible ways of implementing the
methods, apparatuses, and/or systems described herein that
will be apparent after an understanding of the disclosure of
this application.

[0049] FIGS. 1A to 1C are views schematically illustrating
examples of a spiking neural network (SNN).

[0050] The SNN is an artificial neural network that com-
putationally attempts to accomplish trained objectives by
implementing a neural network mechanism using neurons.
The neurons may also be referred to as artificial neurons
though such reference is not intended to impart any relat-
edness with respect to how the neural network architecture
computationally maps or thereby intuitively recognizes
information and how a human’s neurons operate, i.e., the
term artificial neuron is merely a term of art referring to the
hardware implemented nodes of a neural network, e.g.,
implemented through a combination of hardware and
instructions or implemented through hardware only
approaches. For example, the SNN may operate based on
discrete spike signal(s). Herein, it is noted that use of the
term ‘may’ with respect to an example or embodiment, e.g.,
as to what an example or embodiment may include or
implement, means that at least one example or embodiment
exists where such a feature is included or implemented while
all examples and embodiments are not limited thereto.

[0051] Referring to FIG. 1A, a neuron 10 includes an input
terminal through which an input spike signal is input. The
input spike signal may have different characteristics and
shapes according to physical or computational implement-
ing methods. When the SNN is implemented purely by a
computational method into, for example, a software pro-
gram, the input spike signal may be expressed as informa-
tion about the time at which the input spike signal is
received. Alternatively, the input spike signal may be
expressed as a complex neural spike signal varying with
time and having varying shapes. For example, the neural
spike signal may have a shape that is analogous to biological
signals, as well as other varying shapes in varying examples.
When the spike receipt or generation of neuron 10 is
implemented through hardware, the input spike signal may
be a pulse signal such as a current, voltage, charge, or
magnetic pulse signal, or may be a more complicated
delicate time-dependent signal. In general, a neuron may
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have at least one internal state variable X,. In this case, 1 may
refer to an index integer allocated to each neuron.

[0052] The input spike signal may increase or decrease the
state variable x,, and the former is referred to as a positive
contribution degree and the latter is referred to as a negative
contribution degree. This is referred to as a neuron integrat-
ing a received input spike signal. In addition, based on an
implemented leakage mechanism, the state variable x; of the
neuron may tend to converge to a rest state value while a
spike signal is input. According to the leakage mechanism,
the neuron reaches a rest state when the neuron does not
receive a spike signal for a sufficiently long period of time.
[0053] FIG. 1B is a view illustrating an example of
connections between neurons.

[0054] Herein, such artificial neurons are connected to one
other through computational or hardware connections or
links, also referred to as artificial synapses. Each such
synapse is unidirectional. That is, signals are transmitted in
a direction from a pre-synaptic terminal toward a post-
synaptic terminal. The synapse adjusts the amount of influ-
ence of a spike signal output from a pre-synaptic neuron,
which is a signal transmitting neuron transmitting the spike
signal in the direction of a current neuron, on a spike signal
output by the current neuron and input to a post-synaptic
neuron. Herein, while such aforementioned computational
or hardware connections or links will be referred to as
synapses, such references are not intended to impart any
relatedness with respect to how the neural network archi-
tecture computationally maps or thereby intuitively recog-
nizes information and how a human’s synapses operate, i.e.,
the term synapse or synaptic weight is merely a term of art
referring to the computational or hardware implemented
connections or links of the neural network, e.g., imple-
mented through a combination of hardware and instructions
or implemented through hardware only approaches.

[0055] In general, the degree of adjustment is determined
by a synaptic weight w,. The synaptic weight w, is
expressed using a combination of an index “i” indicating a
pre-synaptic neuron and an index “j” indicating a post-
synaptic neuron.

[0056] Such a synaptic weight may vary with time-based
on “learning rules.” For example, an artificial neural net-
work may learn based on the pattern of a spike signal input
to the artificial neural network or a spike signal generated by
the artificial neural network.

[0057] In supervised learning, an external monitoring
agent is involved in determining whether to learn a given
target function, whereas in unsupervised learning, there is no
external monitoring agent involved in learning. In unsuper-
vised learning, the artificial neural network learns statistical
representations of input features. Spike-timing-dependent
plasticity (STDP) learning is an example of unsupervised
learning for SNN.

[0058] FIG. 1C is a view illustrating an example of an
STDP learning function graph.

[0059] In the case of a synapse connecting a pre-synaptic
neuron i and a post-synaptic neuron j, a synaptic weight w,,
is determined by At which is a difference between a post-
synaptic spike generation time t,,,., and a pre-synaptic spike
generation time t,,,, as expressed by Bquation 1 below.

At=t 1,

‘post ‘pre

—Equation 1—

[0060] At is a positive number, and a corresponding syn-
aptic weight is potentiated when a pre-synaptic spike and a
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post-synaptic spike have a causal relationship and is
depressed when the pre-synaptic spike and the post-synaptic
spike do not have a causal relationship. Synapse potentiation
may be understood to be a strengthening of synapses based
on recent patterns of activity in signal transmission between
two neurons. Synapse depression may be understood to be
a decrease in synaptic strength based on recent patterns of
activity in signal transmission between two neurons.
[0061] In general, the value of an STDP learning function
is non-zero in a limited time window [-Tmin, +Tmax]. For
example, in the artificial SNN, Tmin and Tmax, e.g., in the
range of less than 100 ms, may vary based on a dynamic
time constant of the pattern to be learned.

[0062] FIGS. 2A to 2D are views illustrating examples of
time-dependent STDP learning functions.

[0063] FIG. 2A is a view illustrating an example of a
causal STDP learning function graph.

[0064] When the ratio of area A+ and area A- shown in
FIG. 2A is similar to the ratio of area A+ and area A- shown
in FIG. 1C, similar results of synapse potentiation and
synapse depression are deduced.

[0065] FIG. 2B is a view illustrating an example of a
narrow potentiation window STDP learning function graph.
[0066] In a narrow potentiation window STDP learning
function, potentiating learning is performed only in a narrow
positive time window [0, Tp], and depressing learning is
performed in the other time region of the time window
[-Tmin, Tmax], i.e., ime window [-Tmin, 0] and [Tp,
+Tmax].

[0067] In indiscriminate depressing STDP, when Tmax
extends to positive infinity and -Tmin extends to negative
infinity, all synapses connecting a target neuron, generating
a spike, to pre-synaptic neurons of the target neuron are
depressed by a fixed amount, and net potentiation occurs at
a synapse that has transmitted a spike signal from a pre-
synaptic neuron to the target neuron within a certain period
of time before the spike has generated in the target neuron.
FIG. 2C is a view illustrating an example of a graph of a
STDP learning function defining only a symmetric Hebbian
potentiation.

[0068] Referring to FIG. 2C, when the difference between
a pre-synaptic spike signal generation time and a post-
synaptic spike signal generation time is within a certain
period of time, regardless of the order of the signals, synapse
potentiation may occur.

[0069] FIG. 2D is a view illustrating an example of a
graph of a symmetric Hebbian STDP learning function
having a narrow potentiation window.

[0070] Referring to FIG. 2D, when the difference between
a pre-synaptic spike signal generation time and a post-
synaptic spike signal generation time is within a limited time
window [-Tn, Tp], potentiating learning occurs, while
depressing learning occurs outside the limited time window.
[0071] In this example, when Tmax extends to positive
infinity and -Tmin extends to negative infinity, depressing
learning in accordance with the STDP learning function
shown in FIG. 2D is referred to as a “symmetric indiscrimi-
nate depressing STDP.”

[0072] As described above, FIGS. 2A to 2D show time-
dependent learning functions. Therefore, when the time-
dependent learning functions are implemented through hard-
ware only or a combination of hardware and software
instructions, e.g., software algorithms, a timestamp func-
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tioning as information indicating a spike generation time of
a pre-synaptic neuron or a post-synaptic neuron may be
utilized.

[0073] FIGS. 3A to 3D are views illustrating examples of
order-dependent STDP learning functions.

[0074] Order-dependent learning functions may be
obtained by replacing the time axis of the time-dependent
learning functions with a discrete order. Therefore, STDP
learning may be implemented based on an order-dependent
learning functions by tracking the order of a pre-synaptic
event in which a spike of a pre-synaptic neuron is generated
and a post-synaptic event in which a spike of a post-synaptic
neuron is generated, for example, an event list in which
events of an entire artificial neural network system are
recorded in order may be stored, or event lists of sub-
systems may be separately stored. Alternatively, event lists
of individual synapses may be separately stored. When
storing an event list, the maximum number of events that
may be stored in a time-dependent order may be set to N,
and then a neural network may perform a learning process
from recent events.

[0075] FIGS. 3A to 3D show order-dependent learning
functions corresponding to those shown in FIGS. 2A to 2D.
The horizontal axis is changed such that At, indicating the
difference between a post-synaptic spike signal time and a
pre-synaptic spike signal time, is replaced with An indicat-
ing the difference between an order index n,,,, of a post-
synaptic neuron spike and an order index n,,, of a pre-
synaptic neuron spike as shown in Equation 2 below.

An :npost_npre

[0076] Order-based STDP learning is adapted to dynamics
of neural activities. Since STDP is a time-based learning
method, order-dependent STDP is fundamentally different
from biological STDP which is an approach of attempting to
computationally be related to biological neuron signaling,
i.e., through processing hardware, by being dependent on
dynamics and time constants ranging within a particular
range. Here, though the biological STDP approach includes
the reference to “biology’. this biological term is only used
to indicate that a spike signal shape or timing dependencies
may be related to empirical evidence of biological neurons,
though not limited thereto, and is not intended to impart any
relatedness in how the hardware or computational
approaches or specialized hardware are actually imple-
mented and how such biological neurons accomplish their
functions.

[0077] Order-based STDP learning is performed indepen-
dently of the rate at which events occur and dynamics. For
example, even when time stamps of all spikes are multiplied
by the same constant, the order is the same, and thus learning
contents are not changed. Therefore, order-based STDP may
have its own adaptability according to the speed and dynam-
ics of events.

[0078] In general, when STDP is computationally imple-
mented, a learning function applies a small deterministic
synaptic change, for example, Aw or Aw/w equal to or less
than of 1% or 0.1%, to a previous weight. At this time, the
sequence of spikes is repeated while changing the order of
stimuli, thereby preventing bias to a certain preference
pattern.

[0079] Therefore, general STDP is deterministic and may
use high resolution to store weight values for implementing
a small change in a synaptic weight.

Equation 2
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[0080] On the other hand, the resolution used for storing
synaptic weight values may be decreased by applying sto-
chastic features to learning processes. This may be imple-
mented by applying a large amount of change at a small
probability according to a stochastic learning method instead
of applying a small change to a weight according to a
deterministic learning method.

[0081] For example, a stochastic STDP learning model
may be implemented using the learning functions shown in
FIGS. 2A to 2D and 3A to 3D. This may be possible by
changing the vertical axis indicating a weight change
amount Aw to indicate a probability p that a weight is
changed by a preset amount.

[0082] For example, a synaptic weight value may be a
one-bit value, 1 or 0. When (At) or §(An) is a positive
probability p (0<=p<=1), a random number x (0<=x<=1)
may be generated, and a weight may be set to be 1 when
x<=p and may be maintained when x>p. When, £ (At) or §
(A n) is a negative probability p (0>=p>=-1), a random
number x (0<=x<=1) may be generated, and a weight may
be set to be 0 when x<=lpl and may be maintained when
x>Ipl.

[0083] FIG. 4 is a view illustrating a kernel function.
[0084] The kernel function indicates the effect of an input
event, that is, a signal input through a synapse, on an internal
state variable of a neuron. The internal state variable may
also be referred to as a membrane potential or computational
membrane potential of a neuron, though this is not intended
to impart any relatedness with respect to how the neural
network architecture computationally decides the internal
state or circumstances for producing or releasing spikes and
how a biological membrane potential operates to control
biological spike releases.

[0085] When the value of the internal state variable of the
neuron exceeds a threshold value, the neuron may fire and
output a spike signal.

[0086] For example, a state variable x, of a neuron is
expressed by a time function satisfying a differential equa-
tion in a time domain as expressed by Equation 3 below.

T Xk == (s T2 () Equation 3

[0087] In the differential equation above, w, . refers to a
synaptic weight between two neurons defined by an index i,
corresponding to an input terminal or a pre-synaptic neuron
and an index k corresponding to a current neuron, that is, a
post-synaptic neuron. X, is a state variable value in a rest
state that may indicate a rest voltage or state of the compu-
tational neuron membrane potential. The term -x, of the
right-hand side refers to a leakage mechanism decreasing
with time according to a time constant T. When a neuron
does not receive an input signal for a predetermined time,
due to the leakage mechanism, the state variable of the
neuron converges to the rest state value x,,,. The leakage
mechanism may be implemented by an exponential attenu-
ation or a linear attenuation hardware.

[0088] The kernel function h(t), which is an example
function indicating the effect of an input signal on a state
variable x, of a neuron k with respect to time, may increase
in the degree of contribution to the state variable within a
preset period of time after an input time and may then
decrease in the degree of contribution to the state variable as
shown in FIG. 4.

[0089] The function h (t) may be simplified to a delta
function for the efficiency and/or ease of computational
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implementation. Therefore, at the time when an input signal
is input, the state variable is immediately increased by the
synaptic weight w, .

[0090] FIG. 5 is a view illustrating an example of a layer
population P of an SNN.

[0091] In FIG. 5, the layer population P of the SNN (P is
an integer) includes a plurality of neurons. For example,
each of K neurons may be denoted with an index k (k=1, 2,
..., and K). A signal O, output from each of the plurality
of neurons is transmitted as an input signal to an upper layer
population P+1 via an output channel O.

[0092] In addition, the layer population P includes a
plurality of input terminals. For example, each of m input
terminals may be denoted with an index i (i=1, 2, ..., and
m). The input terminals i receive input signals I, through an
input channel I.

[0093] Further, in case of an input event in which the layer
population P receives input signals, input times may be
denoted with t,,, input terminals may be denoted with 1,,, and
the input signals may be denoted with T,..

[0094] Similarly, in case of an output event in which at
least one of the neurons of the layer population P outputs a
spike signal, an output time may be denoted with t_, the
index of the neuron outputting the spike signal may be
denoted with k, and then the output signal may be denoted
with O,.

[0095] Forexample, each SNN layer may include an event
store unit.

[0096] Each time an input event occurs, the event storage
unit may acquire information about the input event and
make a list of pre-synaptic events according to time
expressed by Equation 4 below.

{(tla Iil)a (tza Iiz)a (t3, Ii,,)a e }

[0097] In addition, each time an output event occurs, the
event storage unit may acquire information about the output
event and make a list of post-synaptic events according to
time as in Equation 5 below.

{{t!, O, (2, Op), (15, Op), - - } Equation 5
[0098] Each time an input event (1., I;) occurs, the SNN
layer calculates At=t,~t,,,<0 for each output event (t,, Oy )
of the post-synaptic event list to obtain E(At).

[0099] When E(At) is greater than 0, E(At) is a probability
that a synaptic weight @ ,, is set to be 1, and when E(At) is
less than 0, E(At) is a prol:;ability that the synaptic weight
™, is setto be 0.

[0100] Fach time an output event (t,,., o) occurs, the
SNN layer calculates A=t ~t,>0 for each input event (,
I,) of the post-synaptic event list to obtain E(At).

[0101] When E(At) is greater than 0, E(A) is a probability
that a synaptic weight @ , , is set to be 1, and when E(At) is
less than 0, E(At) is a probability that the synaptic weight
W, , is set to be 0.

[0102] In the case of the indiscriminate depressing STDP
learning function described with reference to FIG. 2B, a
post-synaptic event list may not be used, for example. Each
time an output event occurs, STDP learning may be per-
formed only by determining whether a potentiating learning
region is in a positive region in the x-axis of FIG. 2B
(At=t,,.~t,>), that is, At is within the range of E(At)>0.
[0103] In the case of order-based STDP, a pre-synaptic
event list and a post-synaptic event list do not require
additional information about time, and STDP learning is
performed in order.

Equation 4
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[0104] For example, a pre-synaptic event list may be
expressed with input terminals and order-based indexes as
shown by Equation 6 below.

LT L 1)

[0105] For example, a post-synaptic event list may be
expressed with synapses having output spike signals and
order-based indexes as shown by Equation 7 below.

{Okls Okzs " ' Okg}

[0106] Each time an input event I, occurs, the SNN layer
calculates An=—(B-b)<0 for each output event O of the
post-synaptic event list to obtain E(An).

[0107] When E(At) is greater than 0, E(At) is a probability
that a synaptic weight @, , is set to be 1, and when E(At)
is less than 0, £(At) is a probability that the synaptic weight
W, , s set to be 0.

[0108] Each time an output event O, occurs, the SNN
layer calculates An=(A-a)>0 for each input event I, of the
post-synaptic event list to obtain E(An). '
[0109] When E(At) is greater than 0, E(An) is a probability
that a synaptic weight @, , is set to be 1, and when §(At) is
less than 0, £(An) is a probability that the synaptic weight
W, is set to be 0.

[0110] In the case of the indiscriminate depressing STDP
learning function described with reference to FIG. 3B, a
post-synaptic event list may not be used, for example. Each
time an output event occurs, STDP learning may be per-
formed only by determining whether a potentiating learning
region is in a positive region in the x-axis of FIG. 3B
(An=(A-a)>0), that is, An is within the range of £(An)>0.
[0111] FIG. 6 is a block diagram illustrating an example of
a neuron circuit 600.

[0112] Referring to FIG. 6, the neuron circuit 600 may
include a synaptic weight memory 610, a first sub-circuit
620, a second sub-circuit 630, and a third sub-circuit 640,
noting that examples are not limited thereto and additional
or other components may be included in varying examples.
[0113] The synaptic weight memory 610 may store a
plurality of synaptic weight values. For example, the syn-
aptic weight values may be one-bit data. The synaptic
weight values may have binary values including an active
value or an inactive value. For example, the active value
may be 1, and the inactive value may be 0. However, this is
a non-limiting example.

[0114] A synapse having an active value as a synaptic
weight value is defined as an active synapse (connected),
and a synapse having an inactive value as a synaptic weight
value is defined as an inactive synapse (disconnected).
[0115] The synaptic weight memory 610 may store syn-
aptic weight values respectively corresponding to a plurality
of pre-synaptic neuron circuits. For example, the synaptic
weight memory 610 may store the synaptic weight values of
the plurality of pre-synaptic neuron circuits respectively in
a plurality of cells.

[0116] The synaptic weight memory 610 may be acces-
sible from other components of the neuron circuit 600 or
external components. For example, as cell information and
aread process request signal are applied, the synaptic weight
memory 610 may output a synaptic weight value corre-
sponding to the cell address information. Accordingly, a
component having transmitted the read process request
signal may obtain the synaptic weight value corresponding
to the cell address information. In addition, when cell
address information, a write process request signal, and a

Equation 6
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weight value are applied, a synaptic weight value of the
synaptic weight memory 610 corresponding to the cell
address information may be set to be the applied weight
value.

[0117] The first sub-circuit 620 may receive an input
signal from a pre-synaptic neuron circuit and may determine
whether the received input signal is an active signal having
an active synaptic weight value.

[0118] For example, the first sub-circuit 620 may receive
an input signal. The input signal may be a signal output from
a pre-synaptic neuron circuit of the neuron circuit 600. For
example, the input signal may be a spike signal output from
the pre-synaptic neuron circuit.

[0119] In addition, the input signal may include signals
output from a plurality of pre-synaptic neuron circuits. For
example, spike signals output from at least some of the
plurality of pre-pre-synaptic neuron circuits may be input
selectively or in combination as the input signal.

[0120] For example, the input signal may include infor-
mation for identifying a pre-synaptic neuron circuit that has
output a spike signal. In another example, the input signal
may include information indicating that a pre-synaptic neu-
ron circuit has output a spike signal and/or identification
information about the pre-synaptic neuron circuit. For
example, identification information contained in the input
signal may include unique information of a pre-synaptic
neuron circuit. In addition, the identification information
included in the input signal may include address information
about a cell of the synaptic weight memory 610 in which the
synaptic weight value of the pre-synaptic neuron circuit is
stored.

[0121] The first sub-circuit 620 may determine whether
the input signal is an active input signal, that is, a synaptic
weight value corresponding to the input signal is an active
value. For example, the first sub-circuit 620 may acquire a
synaptic weight value corresponding to the input signal from
the synaptic weight memory 610. For example, the first
sub-circuit 620 may apply a read process request signal and
synapse cell address information included in the input signal
to the synaptic weight memory 610. In addition, the first
sub-circuit 620 may acquire a synaptic weight value corre-
sponding to the synapse cell address information from the
synaptic weight memory 610. When the acquired synaptic
weight value is an active value, the first sub-circuit 620 may
determine that the input signal is an active signal. When the
acquired synaptic weight value is an inactive value, the first
sub-circuit 620 may determine that the input signal is not an
active signal. When the first sub-circuit 620 determines that
the input signal is an active signal, the first sub-circuit 620
may apply a signal to the second sub-circuit 630 to report the
reception of the active signal.

[0122] As the second sub-circuit 630 receives the signal
reporting the reception of the active signal from the first
sub-circuit 620, the second sub-circuit 630 may perform a
calculation to compare a first cumulative reception counter
with a learning threshold value, where the first cumulative
reception counter indicates the number of times active input
signals are received.

[0123] Each time an active input signal is received, the
second sub-circuit 630 may increase a first cumulative
reception counter of active input signals. In addition, when
the second sub-circuit 630 determines that the first cumu-
lative reception counter is equal to or greater than the
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learning threshold value, the second sub-circuit 630 may
reset the first cumulative reception counter.

[0124] In addition, when the second sub-circuit 630 deter-
mines that the first cumulative reception counter is equal to
or greater than the learning threshold value, the second
sub-circuit 630 may increase the learning threshold value. In
an example, the learning threshold value may have an upper
limit. When the learning threshold value is equal to the upper
limit of the learning threshold value, the second sub-circuit
630 may maintain the learning threshold value at the upper
limit. In another example, the learning threshold value may
be a fixed value.

[0125] When the second sub-circuit 630 determines that
the first cumulative reception counter is equal to or greater
than the learning threshold value, the second sub-circuit 630
may apply a learning request signal to the third sub-circuit
640.

[0126] As the third sub-circuit 640 receives the learning
request signal from the second sub-circuit 630, the third
sub-circuit 640 may perform a learning process to adjust a
synaptic weight value.

[0127] The third sub-circuit 640 may perform a potenti-
ating learning process to stochastically set a synaptic weight
value corresponding to the active input signal to an active
value.

[0128] Forexample, in response to an input event in which
an input signal is received, the third sub-circuit 640 may
acquire information about the input event. The information
about the input event may include identification information
about a pre-synaptic neuron circuit included in the input
signal. As described above, the identification information
about the pre-synaptic neuron circuit may include, but is not
limited to, synapse information such as address information
about a cell in which a synaptic weight value corresponding
to the pre-synaptic neuron circuit is stored.

[0129] The third sub-circuit 640 may perform the poten-
tiating learning process to stochastically set a synaptic
weight value of the synaptic weight memory 610 corre-
sponding to the input signal to an active value. For example,
the third sub-circuit 640 may store information about a
plurality of input events. In addition, the third sub-circuit
640 may stochastically determine whether to perform a
synapse potentiating process in which synaptic weight val-
ues corresponding to at least some of the plurality of input
events are set to be active values.

[0130] For example, the third sub-circuit 640 may inde-
pendently determine whether to perform a synapse potenti-
ating process on each of the at least some of the plurality of
input events.

[0131] A first probability, being a synapse potentiating
probability, may be preset. For example, the first probability
may be a constant, but is not limited thereto.

[0132] In addition, the third sub-circuit 640 may perform
a potentiating learning process on a preset number of input
events among a plurality of previously stored input events.
In this case, the third sub-circuit 640 may perform the
potentiating learning process on a preset number of input
events among previously stored input events in a reverse
order to the order in which the input events are stored. When
the number of previously stored input events is less than the
preset number, the third sub-circuit 640 may perform the
potentiating learning process on all of the previously stored
input events.
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[0133] The third sub-circuit 640 may perform a depressing
learning process to stochastically set synaptic weight values
of the synaptic weight memory 610 to an inactive value. For
example, the third sub-circuit 640 may stochastically deter-
mine whether to perform a synapse depressing process in
which each of a plurality of synaptic weight values in the
synaptic weight memory 610 is set to an inactive value.
[0134] The third sub-circuit 640 may independently deter-
mine whether to perform a synapse depressing process on
each of a plurality of synaptic weight values.

[0135] A second probability, being a synapse depressing
probability, may be determined based on a plurality of
synaptic weight values. For example, the second probability
may be determined based on the number of active synapses
having active synaptic weight values among a plurality of
synapses.

[0136] The third sub-circuit 640 may perform a depressing
learning process on at least some of a plurality of synapses
in the synaptic weight memory 610. For example, the third
sub-circuit 640 may perform a depressing learning process
on all synapses in the synaptic weight memory 610. Alter-
natively, the third sub-circuit 640 may perform a depressing
learning process on synapses in the synaptic weight memory
610 on which a potentiating process has not yet been
performed.

[0137] FIG. 7is a block diagram illustrating an example of
a neuron circuit 700.

[0138] The neuron circuit 700 may include a synaptic
weight memory 710, a first sub-circuit 720, a second sub-
circuit 730, a third sub-circuit 740, and a fourth sub-circuit
750.

[0139] The embodiment including the synaptic weight
memory 610, the first sub-circuit 620, the second sub-circuit
630, and the third sub-circuit 640 shown in FIG. 6 may be
applied to the synaptic weight memory 710, the first sub-
circuit 720, the second sub-circuit 730, and the third sub-
circuit 740 shown in FIG. 7, and repeated descriptions
thereof will be omitted.

[0140] The first sub-circuit 720 may apply a signal indi-
cating reception of an active signal to each of the second
sub-circuit 730 and the fourth sub-circuit 750.

[0141] The second sub-circuit 730 may include a learning
counter 731, a learning threshold counter 732, and a first
comparator 733.

[0142] The learning counter 731 may count and output a
first cumulative reception counter of active input signals,
where the first cumulative reception counter indicates the
number of times active input signals are received. For
example, an output count value of the learning counter 731
may increase when the learning counter 731 receives a
signal indicating reception of an active input signal from the
first sub-circuit 720.

[0143] The learning threshold counter 732 may count and
output learning threshold values. The output count value of
the learning threshold counter 732 may have a preset initial
value. The output count value of the learning threshold
counter 732 may increase based on an output value of the
first comparator 733.

[0144] The first comparator 733 may receive the output
count value of the learning counter 731 and the output count
value of the learning threshold counter 732 to perform a
comparison process. When the output count value of the
learning counter 731 and the output count value of the
learning threshold counter 732 are equal, the first compara-
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tor 733 may output a learning request signal. For example,
the first comparator 733 may output a one-bit signal. The
first comparator 733 may output 1 when the output count
value of the learning counter 731 and the output count value
of the learning threshold counter 732 are equal, and may
output 0 when the output count value of the learning counter
731 and the output count value of the learning threshold
counter 732 are different.

[0145]  An output value of the first comparator 733 may be
input to the learning threshold counter 732. For example, the
output count value of the learning threshold counter 732
may increase when the output value of the first comparator
733 toggles from 0 to 1.

[0146] In addition, the output value of the first comparator
733 may be applied as a reset signal to the learning counter
731. For example, when the output value of the first com-
parator 733 is 1, the output count value of the learning
counter 731 may be reset to 0.

[0147] The third sub-circuit 740 may include a random
constant generator 741, a potentiating learning processor
742, a depressing leaming processor 743, and an input event
buffer 744.

[0148] The third sub-circuit 740 may include the random
constant generator 741 to generate a random constant within
a certain range. For example, when the random constant
generator 741 is configured to output a 10-bit value, the
random constant generator 741 may output a random con-
stant within the range of from 0 to 1023, as non-limiting
examples. For example, the random constant generator 741
may be, but is not limited to, a linear feedback shift register
(LFSR).

[0149] When an input event in which the neuron circuit
700 receives an input signal occurs, the input event buffer
744 may store information on the input event. For example,
the input event buffer 744 may store information about a
plurality of input events. The information about the input
event may include identification information about a pre-
synaptic neuron circuit included in the input signal. As
described above, the identification information about the
pre-synaptic neuron circuit may include, but is not limited
10, synapse information such as address information about a
cell in which a synaptic weight value corresponding to the
pre-synaptic neuron circuit is stored. When the input event
buffer 744 is full, the input event buffer 744 may delete the
earliest input event information and may store new input
event information. For example, the input event buffer 744
may be a circular buffer.

[0150] When the third sub-circuit 740 receives a learning
request signal from the second sub-circuit 730, the third
sub-circuit 740 may perform a potentiating learning process
using the potentiating learning processor 742.

[0151] The potentiating learning processor 742 may per-
form a potentiating learning process to stochastically set a
synaptic weight value corresponding to a received input
signal to an active value. For example, the potentiating
learning processor 742 may perform a potentiating learning
process to stochastically set synaptic weight values corre-
sponding to a plurality of received input signals to an active
value. For example, the potentiating learning processor 742
may stochastically determine whether to perform a synapse
potentiating process in which synaptic weight values corre-
sponding to at least some of a plurality of input events stored
in the input event buffer 744 are set to an active value.
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[0152] For example, the potentiating learning processor
742 may independently determine whether to perform a
synapse potentiating process on each of the at least some of
the plurality of input events.

[0153] A first probability being a synapse potentiating
probability may be preset. For example, the first probability
may be a constant, but is not limited thereto.

[0154] For example, the potentiating learning processor
742 may perform a potentiating process on a preset number
of input events that are previously stored in the input event
buffer 744. For example, the potentiating learning processor
742 may perform a potentiating process on a preset number
of input events previously stored in the input event buffer
744 in a reverse order to the order in which the input events
are stored. When the number of input events previously
stored in the input event buffer 744 is less than the preset
number, the potentiating learning processor 742 may per-
form the potentiating learning process on all the input events
previously stored in the input event buffer 744.

[0155] The potentiating learning processor 742 may deter-
mine whether to perform a synapse potentiating process by
comparing a random constant value acquired from the
random constant generator 741 and a potentiating learning
reference constant determined based on the first probability.
For example, when the random constant is less than or not
greater than a potentiating learning reference constant value
calculated by multiplying the upper limit of the random
constant by the first probability, the potentiating learning
processor 742 may perform a synapse potentiating process.
That is, the potentiating learning processor 742 may set a
synaptic weight value of the synaptic weight memory 710,
corresponding to learning target input event information, to
an active value. The potentiating learning processor 742 may
apply cell address information corresponding to an input
event, a write request signal, and an active value to the
synaptic weight memory 710.

[0156] In addition, when the random constant is greater
than or not less than the potentiating learning reference
constant, the potentiating learning processor 742 may per-
form a synapse potentiating process.

[0157] The depressing learning processor 743 may per-
form a depressing learning process to stochastically set
synaptic weight values of the synaptic weight memory 710
to an inactive value. The depressing learning processor 743
may perform a depressing learning process after the poten-
tiating learning processor 742 performs a potentiating learn-
ing process.

[0158] The depressing learning processor 743 may per-
form a depressing learning process on at least some of a
plurality of synapses in the synaptic weight memory 710.
[0159] For example, the depressing learning processor 743
may perform a depressing learning process on all of the
synapses in the synaptic weight memory 710. Alternatively,
the depressing learning processor 743 may perform a
depressing learning process on synapses in the synaptic
weight memory 710 on which a potentiating learning pro-
cess has not been performed.

[0160] The depressing learning processor 743 may sto-
chastically determine whether to perform a synapse depress-
ing process in which each of the synaptic weight values in
the synaptic weight memory 710 is set to an inactive value.
[0161] For example, the depressing learning processor 743
may independently determine whether to perform a synapse
depressing process on a plurality of synaptic weight values.
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[0162] The depressing learning processor 743 may deter-
mine a second probability, which is a synapse depressing
probability, based on a plurality of synaptic weight values.
For example, the second probability may be determined
based on the number of active synapses having active
synaptic weight values among a plurality of synapses. For
example, the ratio of the difference between a preset proper
number of active synapses and the number of active syn-
apses to the number of active synapses may be set to the
second probability.

[0163] The depressing learning processor 743 may deter-
mine whether to perform a synapse depressing process by
comparing a random constant acquired from the random
constant generator 741 and a depressing learning reference
constant determined based on the second probability. For
example, when the random constant is less than a depressing
learning reference constant calculated by multiplying the
upper limit of the random constant by the second probability,
the depressing learning processor 743 may perform the
synapse depressing process. That is, when the random
constant is less than or not greater than the depressing
learning reference constant, the depressing learning proces-
sor 743 may set synaptic weight values of the synaptic
weight memory 710 to an inactive value. The depressing
learning processor 743 may apply cell address information
corresponding to a depressing target synaptic weight, a write
request signal, and an inactive value to the synaptic weight
memory 710.

[0164] In another example, when the random constant is
greater than or equal to the depressing learning reference
constant, the depressing learning processor 743 may per-
form a synapse depressing process.

[0165] The fourth sub-circuit 750 may compare a second
cumulative reception counter of active input signals with a
firing threshold value. In addition, when the second cumu-
lative reception counter of active input signals reaches the
firing threshold value, the fourth sub-circuit 750 may trans-
mit a spike signal 71 to a post-synaptic neuron circuit of the
neuron circuit 700.

[0166] The fourth sub-circuit 750 may include a firing
counter 751 and a second comparator 752. The firing counter
751 may count and output a second cumulative reception
counter of active input signals. For example, the output
count value of the firing counter 751 may increase when the
firing counter 751 receives a signal indicating reception of
an active input signal from the first sub-circuit 720.

[0167] The second comparator 752 may receive the output
count value of the firing counter 751 and the firing threshold
value to perform a comparison process. The firing threshold
value may be a preset constant. For example, the firing
threshold value may be a pre-stored value or a value
received from an external component.

[0168] The second comparator 752 may output the spike
signal 71 when the output count value of the firing counter
751 and the firing threshold value are equal. For example,
the second comparator 752 may output a one-bit signal. At
this time, the second comparator 752 may output 1 when the
output count value of the firing counter 751 and the firing
threshold value are equal and may output 0 when the output
count value of the firing counter 751 and the firing threshold
value are different. When the output value of the second
comparator 752 is 1, the spike signal 71 is output.

[0169] In addition, the output value of the second com-
parator 752 may be applied as a reset signal to the firing
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counter 751. For example, when the output value of the
second comparator 752 is 1, the output count value of the
firing counter 751 may be reset to Q.

[0170] The spike signal 71 of the second comparator 752
may be applied to a post-synaptic neuron circuit of the
neuron circuit 700.

[0171] FIG. 8 is a view illustrating an example of a
synapse weight learning system 800.

[0172] The synapse weight learning system 800 may
include a neuron circuit 860 and a learning circuit 840.
[0173] In FIG. 7, the third sub-circuit 740 of the neuron
circuit 700 performs a synapse weight learning process.
However, in FIG. 8, the learning circuit 840 provided
outside the neuron circuit 860 may perform a synapse
weight learning process.

[0174] The examples including the synaptic weight
memories 610 and 710 and the first sub-circuits 620 and 720
shown in FIGS. 6 and 7 may be applied to a synaptic weight
memory 810 and a first sub-circuit 820 shown in FIG. §. In
addition, the examples including the second sub-circuits 630
and 730, the learning counter 731, the learning threshold
counter 732, and the first comparator 733 shown in FIGS. 6
and 7 may be applied to a second sub-circuit 830, a learning
counter 831, a learning threshold counter 832, and a first
comparator 833 shown in FIG. 8, respectively. The example
including the fourth sub-circuit 750, the firing counter 751,
and the second comparator 752 shown in FIG. 7 may be
applied to a fourth sub-circuit 850, a firing counter 851, and
a second comparator 852 shown in FIG. 8, respectively.
[0175] In addition, the examples including the third sub-
circuits 640 and 740, the random constant generator 741, the
potentiating learning processor 742, the depressing learning
processor 743, and the input event buffer 744 shown in
FIGS. 6 and 7 may be applied to the learning circuit 840, a
random constant generator 841, a potentiating learning
processor 842, a depressing learning processor 843, and an
input event buffer 844, respectively. Therefore, in the fol-
lowing description provided with reference to FIG. 8, the
same descriptions as those given with reference to FIGS. 6
and 7 will not be repeated.

[0176] The neuron circuit 860 may determine whether a
received input signal is an active signal having an active
synapse value, and when a first cumulative reception counter
of active input signals reaches a learning threshold value, the
neuron circuit 860 may transmit a learning request signal to
the learning circuit 840.

[0177] The neuron circuit 860 may transmit a learning
request signal of the first comparator 833 of the second
sub-circuit 830 to the learning circuit 840. In addition, the
neuron circuit 860 may transmit identification information
about the neuron circuit 860 to the learning circuit 840
together with the learning request signal. Accordingly, the
learning circuit 840 may identify the neuron circuit 860 that
has transmitted the learning request signal, based on the
identification information about the neuron circuit 860.
[0178] As the learning circuit 840 receives the learning
request signal from the neuron circuit 860, the potentiating
learning processor 8§42 and the depressing learning proces-
sor 843 may access the synaptic weight memory 810 of the
neuron circuit 860 and may perform a potentiating learning
process and a depressing learning process, respectively.
[0179] FIG. 9 is a view illustrating an example of a
synapse weight learning system 900 including a plurality of
neuron circuits 910 and 920.
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[0180] The neuron circuit 860 of the example shown in
FIG. 8 may be applied to the plurality of neuron circuits 910
and 920, and the learning circuit 840 of the example shown
in FIG. 8 may be applied to a learning circuit 940.

[0181] The learning circuit 940 may perform a synapse
weight learning process on the plurality of neuron circuits
910 and 920. In addition, the plurality of neuron circuits 910
and 920 may identify each other using identification infor-
mation.

[0182] The plurality of neuron circuits 910 and 920 and
the learning circuit 940 may communicate with each other
through a bus 970. The learning circuit 940 may receive a
learning request signal from each of the plurality of neuron
circuits 910 and 920 through the bus 970. As the learning
circuit 940 receives a learning request signal and identifi-
cation information from the neuron circuits 910 and 920, the
learning circuit 940 may transmit and receive information to
and from a neuron circuit corresponding to the identification
information by using the identification information. Accord-
ingly, the learning circuit 940 may perform a synapse weight
learning process on a neuron circuit corresponding to the
identification information.

[0183] FIG. 10 is a view illustrating an example of a
learning system for hierarchical neuron circuit populations.
[0184] The learning system may include a plurality of
hierarchical populations. Each of the hierarchical popula-
tions may include a plurality of neuron circuits and a
learning circuit.

[0185] Spike signals respectively output from the neuron
circuits of one hierarchical population may be applied as
input signals to the next hierarchical population.

[0186] For example, spike signals (a spike signal N-1_1,
a spike signal N-1_2, . . ., and a spike signal N-1_A)
respectively output from neuron circuits (a neuron circuit
N-1_1, a neuron circuit N-1_2, . . ., and a neuron circuit
N-1_A) of a hierarchical population N-1 may be applied as
input signals (input signal N) to a hierarchical population N.
[0187] Similarly, spike signals (a spike signal N_1, a spike
signal N_2, . . ., and a spike signal N_A) respectively output
from neuron circuits (a neuron circuit N_1, a neuron circuit
N_2, ..., and a neuron circuit N_A) of a hierarchical
population N may be applied as input signals (input signal
N+1) to a hierarchical population N+1.

[0188] Furthermore, in each of the hierarchical popula-
tions, the learning circuit may perform a synapse learning
process on the plurality of neuron circuits. For example, the
learning circuit N-1, the learning circuit N, and the learning
circuit N+1 may respectively perform synapse learning
processes on the neuron circuits of the hierarchical popula-
tion N-1, the hierarchical population N, and the hierarchical
population N+1. The neuron circuits and the learning cir-
cuits of the embodiments shown in FIGS. 8 and 9 may be
applied to the plurality of neuron circuits and the learning
circuits of FIG. 10, for example.

[0189] FIG. 11 is a flowchart illustrating an example of a
synapse weight learning method for a neuron circuit.
[0190] In process 1110, the neuron circuit may receive an
input signal from a pre-synaptic neuron circuit and may
determine whether the received input signal is an active
signal having an active synaptic weight value.

[0191] The neuron circuit may store a plurality of synaptic
weight values. For example, the neuron circuit may store
synaptic weight values respectively corresponding to a plu-
rality of pre-synaptic neuron circuits. For example, the
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synaptic weight value may be a one-bit information. The
synaptic weight value may have a binary value including an
active or inactive value. For example, the active value may
be 1, and the inactive value may be 0. However, this is a
non-limiting example. At this time, a synapse having an
active synaptic weight value is defined as an active synapse,
and a synapse having an inactive synaptic weight value is
defined as an inactive synapse.

[0192] The neuron circuit may receive an input signal. The
input signal may be a signal output from a pre-synaptic
neuron circuit of the neuron circuit. For example, the input
signal may be a spike signal output from the pre-synaptic
neuron circuit. In addition, the input signal may include
signals output from a plurality of pre-synaptic neuron cir-
cuits. For example, spike signals output from at least some
of the plurality of pre-synaptic neuron circuits may be input
selectively or in combination as the input signal.

[0193] For example, the input signal may include infor-
mation for identifying a pre-synaptic neuron circuit that has
output a spike signal. In another example, the input signal
may include information indicating that a pre-synaptic neu-
ron circuit has output a spike signal and/or identification
information about the pre-synaptic neuron circuit. For
example, identification information contained in the input
signal may include unique identification information of a
pre-synaptic neuron circuit. In addition, the identification
information included in the input signal may include address
information about a cell of a memory in which a synaptic
weight value of the pre-synaptic neuron circuit is stored.

[0194] The neuron circuit may determine whether the
input signal is an active input signal, that is, a synaptic
weight value corresponding to the input signal is an active
value. For example, the neuron circuit may acquire a syn-
aptic weight value corresponding to the input signal. When
the acquired synaptic weight value is an active value, the
neuron circuit may determine that the input signal is an
active signal. When the acquired synaptic weight value is an
inactive value, the neuron circuit may determine that the
input signal is not an active signal.

[0195] In process 1120, when the input signal is deter-
mined as an active signal, the neuron circuit may compare
a first cumulative reception counter of active input signals
with a learning threshold value.

[0196] When the neuron circuit determines that the first
cumulative reception counter reaches the learning threshold
value, the neuron circuit may reset the first cumulative
reception counter.

[0197] For example, when the neuron circuit determines
that the first cumulative reception counter reaches the learn-
ing threshold value, the neuron circuit may increase the
learning threshold value. According to an example, the
learning threshold value may have an upper limit. When the
learning threshold value is equal to the upper limit of the
learning threshold value, the neuron circuit may maintain
the learning threshold value at the upper limit. In another
example, the learning threshold value may be a fixed value.
[0198] In process 1130, when the first cumulative recep-
tion counter reaches the learning threshold value, the neuron
circuit may perform a potentiating learning process to set the
synaptic weight value of at least one input signal previously
received to be an active value.

[0199] For example, when the neuron circuit determines
that the first cumulative reception counter reaches the learn-
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ing threshold value, the neuron circuit may perform a
potentiating learning process to adjust a synaptic weight
value.

[0200] The neuron circuit may perform a potentiating
learning process to stochastically set a synaptic weight value
corresponding to the received input signal to an active value.

[0201] When an input event in which an input signal is
received occurs, the neuron circuit may acquire information
about the input event. The neuron circuit may store infor-
mation about a plurality of input events. In addition, the
neuron circuit may stochastically determine whether to
perform a synapse potentiating process in which synaptic
weight values corresponding to at least some of a plurality
of input events are set to an active value. At this time, the
neuron circuit may independently determine whether to
perform a synapse potentiating process on each of the at
least some of the plurality of input events.

[0202] The information about the input event may include
identification information about a pre-synaptic neuron cir-
cuit included in the input signal. As described above, the
identification information about the pre-synaptic neuron
circuit may include, but is not limited to, synapse informa-
tion such as information about an address at which a
synaptic weight value corresponding to the pre-synaptic
neuron circuit is stored.

[0203] The neuron circuit may perform a potentiating
learning process on a preset number of input events among
a plurality of previously stored input events. At this time, the
neuron circuit may perform a potentiating learning process
on a preset number of input events among a plurality of
previously stored input events in the reverse order to the
order in which the input events are stored. When the number
of previously stored input events is less than the preset
number, the neuron circuit may perform the potentiating
learning process on all of the previously stored input events.
[0204] A first probability being a synapse potentiating
probability may be preset. For example, the first probability
may be a constant, but is not limited thereto.

[0205] The neuron circuit may acquire a random constant
and may determine whether 1o perform a synapse potenti-
ating process by comparing the random constant and a
potentiating learning reference constant determined based
on the first probability. For example, when the random
constant is less than a potentiating learning reference con-
stant calculated by multiplying the upper limit of the random
constant by the first probability, the neuron circuit may
perform the synapse potentiating process. At this time, the
random constant may be a positive number randomly
selected from a certain range of positive numbers.

[0206] In another example, when the random constant is
less than the potentiating learning reference constant, the
neuron circuit may perform a synapse potentiating process.

[0207] 1In process 1140, the neuron circuit may perform a
depressing learning process to set each of a plurality of
synaptic weight values to an inactive value according to a
second probability.

[0208] The neuron circuit may perform the depressing
learning process to stochastically set the synaptic weight
values to an inactive value. For example, the neuron circuit
may stochastically determine whether to perform a synapse
depressing process in which each of a plurality of synaptic
weight values is set to an inactive value. At this time, the
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neuron circuit may independently determine whether to
perform a synapse depressing process on each of a plurality
of synaptic weight values.

[0209] The neuron circuit may perform the depressing
learning process after performing the potentiating learning
process. The neuron circuit may perform the depressing
learning process on at least some of a plurality of synapses.
For example, the neuron circuit may perform the depressing
learning process on all of a plurality of synapses. In another
example, the neuron circuit may perform the depressing
learning process on some of a plurality of synapses on which
the potentiating learning process is performed.

[0210] For example, the neuron circuit may stochastically
determine whether to perform a synapse depressing process
in which each of weight values of a plurality of synapses is
set to an inactive value.

[0211] The second probability being a synapse depressing
probability may be determined based on a plurality of
synaptic weight values. For example, the second probability
may be determined based on the number of active synapses
having active synaptic weight values among a plurality of
synapses. For example, the ratio of the difference between a
preset proper number of active synapses and the number of
active synapses to the number of active synapses may be set
to the second probability.

[0212] The neuron circuit may acquire a random constant
and may determine whether to perform a synapse depressing
process by comparing the random constant and a depressing
learning reference constant determined based on the second
probability. For example, when the random constant is less
than a depressing learning reference constant calculated by
multiplying the upper limit of the random constant by the
second probability, the neuron circuit may perform the
synapse depressing process. That is, when the random
constant is less than the depressing learning reference con-
stant, the neuron circuit may set the weight value of a
synapse to an inactive value.

[0213] In another example, when the random constant is
greater than the depressing learning reference constant, the
neuron circuit may perform a synapse depressing process.

[0214] When the input signal is determined as an active
signal, the neuron circuit may compare a second cumulative
reception counter of active input signals with a firing thresh-
old value. In addition, when the second cumulative reception
counter reaches the firing threshold value, the neuron circuit
may output a spike signal. For example, the neuron circuit
may send the spike signal to a post-synaptic neuron circuit.
[0215] When the neuron circuit determines that the second
cumulative reception counter reaches the firing threshold
value, the neuron circuit may reset the second cumulative
reception counter.

[0216] For example, the firing threshold may be a fixed
value. In another example, when the neuron circuit deter-
mines that the second cumulative reception counter reaches
the firing threshold value, the neuron circuit may increase
the firing threshold value. In addition, the firing threshold
value may have an upper limit. When the firing threshold
value is equal to the upper limit of the firing threshold value,
the neuron circuit may maintain the firing threshold value at
the upper limit.

[0217] FIG. 12 is a view illustrating a neuron block
scheme for implementing a neuron circuit.

[0218] The neuron block may have unique neuron address
information. For example, a neuron address information
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signal Neuron_addr may include identification address
information about each corresponding neuron block. When
the value of an STDP active neuron address signal STDP_
active_addr applied from the outside for information com-
munication with the neuron block is equal to the value of the
neuron address information signal Neuron_addr, a STDP
learning process for the corresponding neuron block is
activated.

[0219] The neuron block may receive an input signal
AERin_v. AERin_v may refer to a spike signal applied from
a pre-synaptic circuit.

[0220] In addition, the neuron block may receive an input
signal AERin. The input signal AERin may include infor-
mation about a synapse corresponding to the pre-synaptic
circuit that has output the received input signal AErin_v. For
example, AERin may refer to address information about an
input terminal receiving a corresponding input signal among
a plurality of input terminals applying input signals to the
neuron block. Alternatively, AERin may refer to address
information of a pre-synaptic circuit applying an input signal
to the neuron block. Alternatively, the signal AERin may
include address information of a synaptic weight memory
cell that stores a corresponding synaptic weight value.
[0221] In addition, a neuron active signal Neuron_active
may indicate that the neuron block is in a normal state
capable of processing an input signal. For example, when
the value of the neuron active signal Neuron_active is 0,
although the neuron block receives an input from a pre-
synaptic circuit, the value of a counting trigger signal
Cout_upl input to a firing counter and a learning counter
does not toggle, and thus the value of the firing counter and
the value of the learning counter may not increase.

[0222] When the value of the neuron active signal Neu-
ron_active is 1, as an input signal AERIn_v having an active
value of 1, for example, is input, the output count value of
the firing counter and the output count value of the learning
counter may increase. For example, as the input signal
AFRin_v having an active value is input, the value of the
counting trigger signal Count-up1 input to the firing counter
and the learning counter may toggle to 1, and thus the output
count value of the firing counter and the output count value
of the learning counter may increase.

[0223] At this time, a synaptic weight value corresponding
1o the input signal AERin_v may be considered so that the
value of the counting trigger signal Count-up1 may toggle to
1. For example, the neurons block may acquire a corre-
sponding synaptic weight value syn_weight from a synaptic
weight memory based on a synapse address signal rd_addr
included in the signal AERin corresponding to the input
signal AERin_v. The synapse address signal rd_addr may be
used to acquire the synaptic weight value syn_weight used
in the neuron block for processing the input signal AERin_v,
and may be different from an STDP request synapse address
signal STDP_RD_addr used for information communication
with an STDP learning block (described later).

[0224] Only when the synaptic weight value syn_weight
acquired according to the input signals AERin_v and AER-
in_v is 1, the value of the counting trigger signal (first count
trigger signal) Count_upl may toggle to 1. This indicates
that a synapse transmitting that input is active.

[0225] In addition, the neuron block includes a synaptic
weight memory. For example, the synaptic weight memory
has a capacity of 1024 bits, and thus may maximally store
synaptic weight values corresponding to 1024 synapses. For
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example, the synaptic weight value stored in each of the
synaptic weight memory cells may have either an active
value or an inactive value. For example, the active value of
the synaptic weight value is 1, and the inactive value of the
synaptic weight value is 0. In this case, initial values of all
synaptic weight values stored in the synaptic weight
memory may be set to be 1.

[0226] The firing counter may receive a reset signal as an
input signal for initializing the count value of the counting
trigger signal Count-upl. The reset signal may have a value
for resetting the count value of the firing counter when a
spike signal Spike_out is output or a signal inh_event
instructing initialization is received from the outside.
[0227] The count value count2 of the firing counter is used
as a reference for determining firing of a neuron. For
example, when the count value count2 of the firing counter
reaches a preset firing threshold value spike_threshold, a
neuron may fire. In this case, the firing threshold value
spike_threshold may be a preset fixed value. In another
example, the firing threshold value spike_threshold may
increase each time the count value count2 of the firing
counter reaches the firing threshold value spike_threshold.
At this time, even when the firing threshold value spike_
threshold increases, the firing threshold value spike_thresh-
old may not have an upper limit or may have an upper limit.
[0228] For example, the count value count2 of the firing
counter and the firing threshold value spike-threshold may
be compared. When the count value count2 of the firing
counter is greater than the firing threshold value spike-
threshold, a spike signal Spike_out has a value of 1. The case
in which the spike signal Spike_out has a value of 1
indicates that the neuron block outputs a spike signal. For
example, the output spike signal Spike_out may be trans-
mitted to an upper-layer neuron block. For example, in a
hierarchical neuron system, a spike signal Spike_out output
from the current neuron block is transmitted to an upper-
layer neuron block for which the current neuron block is a
pre-synaptic neuron, so as to be used for firing or learning
of the upper-layer neuron block.

[0229] In addition, a neuron module may include a learn-
ing request module that requests an STDP learning module
for learning. For example, the neurons block may include
the learning counter configured to determine whether to
request learning and a STDP_threshold counter. Since the
firing counter and the learning counter used for firing or
learning of the upper-layer neuron block are distinguished
from each other, although the learning speed of the current
neuron block is gradually reduced, the learning speed of the
upper-layer neuron block may not be reduced.

[0230] Like the firing counter, the learning counter may
increase a count value when the first count trigger signal
Count_upl toggles to 1.

[0231] When the count value countl of the learning coun-
ter reaches a preset learning threshold value, the neuron
block may output a learning request signal STDP_req to
request learning. For example, the count value count3 of the
STDP_threshold counter that outputs a learning threshold
value described below may be compared with the count
value countl of the learning counter. As a result of the
comparison, when the count value countl of the learning
counter is equal to or greater than the count value count3 of
the STDP_threshold counter, a learning request STDP_req
signal having a value of 1 may be output. For example, when
STDP_req is 1, learning is requested.
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[0232] The learning counter may receive a reset signal.
For example, the value of the reset signal may be determined
based on signals STDP_activate and STDP_event indicating
whether STDP learning has been activated or performed and
the signal STDP_req indicating whether the neuron block
has requested STDP learning. For example, when the count
value countl of the learning counter reaches the count value
count3 of the STDP_threshold counter, and the value of the
signal STDP_req becomes 1, the learning counter is reset
such that the count value count1 may be resent to an initial
value, for example, 0.

[0233] The learning threshold value may be increased. For
example, the learning threshold value may be the count
value count3 output from the STDP_threshold counter.
[0234] The STDP_threshold counter may acquire an ini-
tialize signal as an input. For example, the initialize signal
may be a preset initial learning threshold value STDP_
threshold _init. As the STDP_threshold counter receives the
initialize signal, the STDP_threshold counter may output the
initial learning threshold value STDP_threshold_init as a
count value.

[0235] In addition, the STDP_threshold counter may
receive a second count trigger signal count_up2. The count
value count3 of the STDP_threshold counter may increase
as the second count trigger signal count_up2 toggles to 1.
[0236] The second count trigger signal count_up2 may be
determined based on the learning request signal STDP_req
which is a signal for requesting an STDP block for learning,
Ags the leaming request signal STDP_req is toggled to 1, the
second count trigger signal Count_up2 having the same
value as the learning request signal STDP_req signal is
toggled to 1, and the count value count3 of the STDP_
threshold counter may be increased.

[0237] The increase in the count value count3 of the
STDP_threshold counter may mean that the learning speed
of a corresponding neuron gradually decreases as learning
proceeds. Owing to this, feature learning is not concentrated
on a particular neuron, and competition between neurons is
induced. In another example, the learning threshold value
may be a preset fixed value. As described above, since the
firing counter providing a reference for outputting a spike
signal Spike_out used for learning of an upper-layer neuron
block is separately implemented, the learning speed of the
upper-layer neuron block is not directly affected by a
decrease in the learning speed of the current neuron block
occurring as the learning threshold value of the current
neuron block increases.

[0238] In addition, the neuron block may perform a leak
process.

[0239] Aleak event signal Leak_event may be input to the
firing counter and the learning counter. The leak event signal
Leak_event is for implementing variations in the state of a
neuron with time. For example, the count values count1 and
count2 of the firing counter and the learning counter may be
decreased every preset time according to the leak event
signal Leak_event.

[0240] Similarly, as a threshold value leak event signal
TH_Leak_event is input, the count value of the STDP_
threshold counter may be decreased every preset time.
[0241] At this time, the decrease rate of the STDP_
threshold counter affected by the threshold value leak event
signal TH_Leak_event may be lower than the decrease rate
of the count values of the firing counter and the learning
counter affected by the leak event signal Leak_event.
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[0242] As described above, signals STDP_active_addr,
STDP_RD_addr, STDP_WR_en, and STDP_WR_data are
input signals received from the STDP learning block.

[0243] For example, the input signals mentioned above
may be used by the STDP learning block to access the
synaptic weight memory of the neuron block for reading or
varying weight values.

[0244] The STDP active neuron address signal STDP_
active_addr is an input signal received from the STDP
learning block and includes address information of STDP
learning target neurons. When the value of the STDP active
neuron address signal STDP_active_addr and the value of
the neuron address information signal Neuron_addr includ-
ing unique address information of a corresponding neuron
block are compared and determined to be equal to each
other, a precondition for the STDP learning block to access
the synaptic weight memory of the neuron block may be
satisfied.

[0245] In an example, the STDP learning block may
access each of a plurality of weight values stored in the
synaptic weight memory so as to perform a learning process.
At this time, the STDP request synapse address signal
STDP_RD addr includes cell address information for the
STDP learning block to access a particular cell for reading
or varying a synaptic weight value stored in the particular
cell. Synapse address information includes cell address
information.

[0246] The synaptic weight memory may receive the
STDP request synapse address signal STDP_RD_addr from
the STDP learning block. When a write enable signal
STDP_WR_en has an inactive value, for example, 0, the
synaptic weight memory outputs, as STDP_RD_data, a
synaptic weight value stored in a cell corresponding to the
STDP request synapse address signal STDP_RD_addr. The
output synaptic weight value is transmitted to the STDP
learning block through an STDP read signal STDP_RD_data
and is used for learning.

[0247] STDP_WR_addr input to the synaptic weight
memory is a write synapse address signal determined based
on the STDP request synapse address signal STDP_RD_
addr. At this time, only when the STDP write enable signal
STDP_WR_en received from the STDP learning block is 1,
the write synapse address signal STDP_WR_addr has a
valid address value for activating a write function of the
synaptic weight memory.

[0248] When the write enable signal STDP_WR_en has an
active value, a synaptic weight value stored in a cell corre-
sponding to the write synapse address signal STDP_WR_
addr is set (changed) to the value of an input STDP write
signal STDP_WR_data.

[0249] Using the above-described read and write pro-
cesses, the STDP learning block may access a learning target
neuron block and may access a particular synaptic weight
memory in the learning target neuron block for reading or
setting a synaptic weight value.

[0250] FIG. 13 is a view illustrating an example of an
STDP learning block scheme for implementing a learning
circuit.

[0251] Referring to FIG. 13, the STDP learning block may
include a circular buffer for storing input events.

[0252] In addition, the STDP learning block may include
a potentiating learning processor (TP processor) for per-
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forming long-term potentiation and a depressing learning
processor (LTD processor) for performing depressing learn-
ing.

[0253] In addition, the STDP learning block may include
amain processor configured to manage the start of a learning
process in response to an STDP learning request, the start
and end of potentiating learning, and the start and end of
depressing learning.

[0254] As at least one neuron block of a plurality of
neuron blocks transmits a learning request signal, the STDP
learning block may receive a learning request reception
signal STDP_addr_v having an active value. In addition, the
STDP learning block may receive a learning request neuron
address signal STDP_req_addr indicating the address of the
neuron block requesting learning. For example, the learning
request neuron address signal STDP_req_addr may be an
8-bit signal identifying up to 256 neuron blocks. That is, one
STDP learning block may perform a learning process on 256
neuron blocks.

[0255] When the learning request reception signal STDP_
addr_v has an active value, and a preparation completion
signal core_rdy indicating completion of preparation for a
learning process is received from the main processor as
described below, a STDP active neuron address signal
STDP_active_addr being an output signal for accessing a
learning target neuron block and indicating address infor-
mation of the learning target neuron block may have a value
corresponding to the learning request neuron address signal
STDP_req_addr.

[0256] Thereafter, the STDP learning block may access a
neuron block corresponding to the STDP active neuron
address signal STDP_active_addr, and may perform a learn-
ing process on the neuron block.

[0257] As the learning process starts, the main processor
may apply a potentiating learning start signal (start) to the
LTP processor. Thereafter, the LTP processor may perform
potentiating learning, and after the potentiating learning, the
LTP processor may apply a potentiating learning end signal
(end) to the main processor.

[0258] After the main processor receives the potentiating
learning end signal (end) from the LTP processor, the main
processor may apply a depressing learning start signal (start)
to the LTD processor in sequence. Then, the LTD processor
may perform depressing learning, and after the depressing
learning, the LTD processor may apply a depressing learning
end signal (end) to the main processor.

[0259] As the main processor receives the depressing
learning end signal, learning for the corresponding neuron
block may be completed.

[0260] While the LTP processor performs the potentiating
learning, output values relating to the potentiating learning
but not relating to depressing learning may be selectively
transmitted to the learning target neuron block by the main
processor. For example, the main processor may output a
potentiating learning active signal LTP_active having an
active value to a multiplexer LTP/LTD configured to selec-
tively output values relating to potentiating learning and
values relating to depressing learning such that the multi-
plexer LTP/LTD may output values relating to potentiating
learning. For example, when the potentiating learning active
signal LTP_active has an active value, the multiplexer
LTP/LTD outputs values relating to potentiating learning,
and when the potentiating learning active signal LTP_active
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has an inactive value, the multiplexer LTP/LTD outputs
values relating to depressing learning

[0261] Upon receiving the potentiating learning start sig-
nal (start) from the main processor, the LTP processor starts
potentiating learning.

[0262] The potentiating learning is performed based on
event information data stored in the circular buffer. For
example, pre-event information may indicate synapse
address information corresponding to input signals applied
to the learning target block, or may indicate input terminal
address information.

[0263] Each time the circular buffer receives an input
signal AERin_v applied to at least one neuron block includ-
ing a learning target neuron, the circular buffer sequentially
stores a signal AERin including corresponding synapse
address information. The circular buffer may have a total
capacity of 1024x10 bits. That is, the circular buffer may
store 10-bits synapse address information corresponding to
1024 input signals that have recently occurred. At this time,
the synapse address information may include addresses for
identifying a plurality of input terminals through which
input signals are transmitted to neuron blocks. Alternatively,
the synapse address information may be address information
of pre-synaptic neuron blocks that have transmitted spike
signals as input signals. The address information of the input
terminals or the address information of the pre-synaptic
neuron blocks, and the address information of a target
neuron block receiving the input signals may in combination
represent the synapse address information. As an active
value is received as the input signal AERin_v, a circular
buffer write enable signal wr_en applied to the circular
buffer may have an active value.

[0264] The LTP processor may set a synaptic weight value
corresponding to recent synapse address information among
synapse address information stored in the circular buffer to
an active value based on a preset potentiating probability
determination parameter (LTP probability).

[0265] At this time, the LTP processor may perform a
potentiating learning process using a preset number of recent
input events among input events corresponding to the syn-
apse address information stored in the circular buffer. The
preset number may be an input number of times of poten-
tiating learning (number of potentiation). Each time the LTP
processor performs a potentiating learning process based on
each input event stored in the circular buffer, the LTP
processor may apply a potentiating learning counting trigger
signal cnt_up so as to increase the count value of a poten-
tiating learning counter by 1 (LTP_cnt+1). When it is
determined, as a result of the comparison, that the increased
potentiating learning count value is equal to the number of
times of potentiating learning (number of potentiation), the
LTP processor may receive a potentiating learning end
signal LTP_done having a value indicating completion. In
addition, the potentiating learning end signal LTP_done may
have the value indicating completion owing to a signal
CB_empty output from the circular buffer and indicating
that no pre-event is stored in the circular buffer. That is, the
LTP processor terminates the potentiating learning process
when the circular buffer is empty or the number of pre-
events on which potentiating learning is performed reaches
the number of times of potentiating learning (number of
potentiation).

[0266] The LTP processor may apply a circular buffer read
enable signal CB_rd_en to the circular buffer. Then, the
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circular buffer may output synapse address information
corresponding to the current input event as a circular buffer
output signal CB_dout. The circular buffer output signal
CB_dout is an intermediate signal rd_addr output through
the multiplexer LTP/LTD.

[0267] In addition, the LTP processor may output a poten-
tiating learning write enable signal LTP_wr_en. Since the
potentiating learning process is being performed, the inter-
mediate signal rd_addr and the potentiating learning write
enable signal LTP_wr_en may be output as output signals of
the multiplexer LTP/LTD according to the potentiating
learning active signal LTP_active. According to an output
value of the multiplexer LTP/LTD, the STDP learning block
may output an intermediate signal rd_addr as an STDP
request synapse address signal STDP_RD_addr, and a
potentiating learning write enable signal LTP_wr_en as a
write enable signal STDP_WR_en.

[0268] Accordingly, a synaptic weight value stored in a
cell of the synaptic weight memory corresponding to the
STDP request synapse address signal STDP_RD_addr may
be obtained from the learning target neuron block through
the STDP read signal STDP_RD_data. During a read pro-
cess. the LTP processor may output a write enable signal
STDP_WR_en having an inactive value. In other words,
during a read process, the I'TP processor deactivates the
write enable signal STDP_WR_en.

[0269] In addition, a random constant generated by a
random constant generator may be compared with a preset
potentiating probability determination parameter (LTP prob-
ability), and when the generated random constant is equal to
or less than the potentiating probability determination
parameter (LTP probability), a synaptic weight value may be
potentiated. The expression “a synaptic weight is potenti-
ated” means that a synaptic weight value corresponding to
the STDP request synapse address signal STDP_RD_Addr
is set to be 1. That is, the STDP learning block outputs 1 to
the learning target neuron as an STDP write data signal
STDP_WR_data . The value of the STDP write data signal
STDP STDP_WR_data is transmitted to the learning target
neuron block, and a synaptic weight value stored in a cell of
the synaptic weight memory of the learning target neuron
block is set to be 1. During the write process, the LTP
processor may output 1 as a write enable signal LTP_wr_en.
Accordingly, the STDP learning block may output 1 as the
STDP write enable signal STDP_WR_en.

[0270] After potentiating learning, the LTD processor may
perform a depressing learning process on the target neuron
block.

[0271] The LTD processor may sequentially perform the
depressing learning process on all the cells of the synaptic
weight memory of the learning target neuron block that store
synaptic weight values. Therefore, the LTD processor
sequentially increases the output value of an rd_counter used
for determining cell address values, so as to sequentially
access the cells of the synaptic weight memory. Accordingly,
according to the sequentially increasing output value of the
rd_counter, the STDP request synapse address signal STDP_
RD_addr is sequentially changed and output. Thus, the
STDP learning block may individually access all the cells of
the synaptic weight memory of the learning target neuron.
[0272] First, the STDP learning block may sequentially
receive synaptic weight values stored in all the cells of the
synaptic weight memory of the learning target neuron block,
and may apply the received weight values to a summer
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increase signal sum_cnt_up. Therefore, the output value of
a weight sum counter (Cnt_Sum of weight) may be the sum
of all the synaptic weight values stored in the synaptic
weight memory.

[0273] In addition, the STDP learning block may receive
a predicted synaptic weight sum (Number of active) which
has been previously determined. In addition, the STDP
learning block may calculate a depressing probability deter-
mination parameter (UTD Probability) by calculating the
difference between the predicted synaptic weight sum
(Number of active) and the sum of all synaptic weight
values, that is, the output value of the weight sum counter
(Cnt_Sum of weight), multiplying the difference by 2710,
and dividing the multiplied difference by the sum of all
synaptic weight values.

[0274] The LTD processor may perform a stochastic
depressing learning process respectively on all the cells of
the synaptic weight memory of the learning target neuron
block using the calculated depressing probability determi-
nation parameter (LTD Probability).

[0275] The LTD processor may sequentially output
address information corresponding to all the cells of the
synaptic weight memory as STDP_RD_addr to obtain a
synaptic weight value of a corresponding cell, and may
stochastically change the synaptic weight value of the cor-
responding cell to 0 based on the depressing probability
determination parameter (LTD Probability). For example, a
random constant generated by the random constant genera-
tor is compared with the depressing probability determina-
tion parameter (LTD Probability). When the generated ran-
dom constant is greater than the depressing probability
determination parameter (LTD Probability), the weight
value of the corresponding cell is changed to 0.

[0276] For example, when the generated random constant
is greater than the depressing probability determination
parameter (LTD Probability), 0 is applied to the STDP write
data signal STDP_WR_data, and thus the weight value of
the cell corresponding to the current STDP request synapse
address signal STDP_RD_addr may be set to be 0. The
above-described depressing learning process is performed
on all the cells of the synaptic weight memory. However,
random constants may be individually generated for the
cells, and thus whether to perform the depressing learning
process on the cells of the same synaptic weight memory
may be differently determined.

[0277] FIG. 14 is a view illustrating a single-core block
scheme for implementing a single-core circuit including a
plurality of neuron circuits.

[0278] FIG. 15 is a view illustrating a multi-core block
including a plurality of single-core blocks.

[0279] A single-core block may include a plurality of
neuron blocks Neuron 0, Neuron 1, Neuron 2, . . ., and
Neuron 255 and a single STDP learning block. In FIG. 14,
a single-core block includes 255 neuron blocks. However,
the number of neuron blocks is not limited thereto.

[0280] The single-core block may receive a signal AER _
in. The signal AER_in may be, for example, a signal
received from a pre-synaptic neuron block of at least one
neuron block of the single-core block. The signal AER_in
may be, for example, a spike signal output from a pre-
synaptic neuron block of at least one neuron block.

[0281] An AER filter may filter out signals not relating to
the neuron blocks of the single-core block from the signal
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AERin. The AER filter may be implemented according to an
artificial neural network architecture.

[0282] The filtered input signal AERin may be input to at
least one neuron block of a plurality of neurons of the
single-core block. For example, the signal AERin may be the
same as the input signal 70 shown in FIG. 7, and the neuron
blocks may be operated as described with reference to FIG.
12.

[0283] In the single-core circuit, the single STDP learning
block performs a learning process on all of the plurality of
neurons, and thus a method for preventing signal collision
between the plurality of neurons is required.

[0284] Furthermore, in the single-core circuit, an input
shared by the plurality of neurons may be input to a core
circuit terminal as a common parameter.

[0285] Forexample, as illustrated in FIG. 12, a plurality of
blocks may have a common occurrence rate of leak events.
Thus, Threshold Leak_rate, which is a parameter specifying
the leak rate at a STDP threshold counter, and Neuron
Leak_rate, which is a parameter specifying the leak rate at
a firing counter and a learning counter, may be input through
a core terminal as common parameters. In addition, since a
leak event needs to be implemented at a slower rate than
other processes, the core circuit may include a Leak_timer
which is a separate timer for determining whether to perform
a leak event.

[0286] STDP_threshold_init indicating an initial threshold
value of the STDP threshold counter, and spike_threshold
indicating a firing threshold value may also be input to the
core circuit as common parameters.

[0287] In addition, Inhibition_active indicating whether to
activate an inhibiting mechanism may be input as a common
parameter. When Inhibition_active is 1, the inhibiting
mechanism is activated. When at least one of a plurality of
neuron blocks of the same core outputs a spike signal, an
inhibiting mechanism signal inh_event having a value of 1
may be input to a plurality of neurons, and thus all firing
counters of the plurality of neurons may be reset.

[0288] In addition, referring to FIG. 15, a general inhibi-
tion parameter General_inhibiton may be used to apply the
inhibiting mechanism to all neurons included in one core of
the multi-core block when a spike signal is output from at
least one of a plurality of neurons included in other cores of
the multi-core block.

[0289] In addition, signals that are required to be distin-
guished between a plurality of neurons are spike signals
spike_out and learning request signals STDP_req output
from the plurality of neurons.

[0290] Based on spike signals spike_out received from a
plurality of neurons, a spike signal output conversion unit
(Spike2AER Unit) may output an output AER_out (8 bit)
identifying a neuron block that has output a spike signal
spike_out. In addition, the Spike2AER Unit may output a
signal AER_out_v indicating that at least one neuron block
has output a spike signal spike_out.

[0291] In addition, based on learning request signals STD-
P_req received from a plurality of neurons, an STDP learn-
ing arbiter unit (STDP arbiter UNIT) may output a learning
request neuron address signal STDP_req_addr identifying a
neuron block that has output the learning request signal
STDP_req. In addition, the Spike2AER Unit may output a
signal STDP_event_out indicating that at least one neuron
block has output a learning request signal STDP_req.
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[0292] When at least one neuron block in a core block
outputs a learning request signal STDP_req, 1 is input as a
signal STDP_envent, and learning counters of all neuron
blocks in the core block are reset. In addition, referring to
FIG. 15, all neurons included in a core of the multi-core
block may be reset when a learning request signal is output
from at least one of a plurality of neurons included in other
cores of the multi-core block.

[0293] InFIG. 15, the multi-core block includes a plurality
of core blocks and receives common parameters Parameter-
s_corel, Parameters_corel, . .. Parameters_core255 that are
shared by the core blocks.

[0294] In addition, a merger receives 8-bit signals AER_
out (8 b) output from the plurality of core blocks and outputs
a 16-bit signal AER_out (16 b).

[0295] In addition, when at least one of neuron blocks
included in at least one of the plurality of core blocks or at
least one of neuron blocks of all the neuron blocks of the
plurality of core blocks outputs a spike signal, a general
inhibition parameter General_inhibiton having a value of 1
is output to request an inhibiting mechanism.

[0296] Similarly, when at least one of neuron blocks
included in at least one of the plurality of core blocks or at
least one of neuron blocks of all the neuron blocks of the
plurality of core blocks outputs a learning request signal
STDP_event_out, a signal STDP_event_in resetting a learn-
ing counter has a value of 1 and is input to the multiple
cores.

[0297] As described above, according to the one or more
of the above embodiments, since the neuron circuit performs
stochastic potentiating learning and depressing leaning, a
SNN may be implemented using binary synaptic weight
values, and thus the capacity of memory for storing synaptic
weight values may be reduced.

[0298] In addition, since a learning process and a firing
process are separately performed in the neuron circuit, the
speed of learning of an upper layer may not be decreased due
to a decrease in the speed of learning of a lower layer. In
addition, though examples are made above of learning or
training, non-limiting examples also include implementation
of the trained SNN for various inference operations, such as
image, object, or speech recognition, verification, or classi-
fication of captured image, object, or speech information
through sensors of the device example that includes such
hardware neurons, synapses, and/or core examples that may
thereby implement the trained SNN. Additional examples
further exist for other objectives.

[0299] The neuron circuit 600, synaptic weight memory
610, first sub-circuit 620, second sub-circuit 630, third
sub-circuit 640, neuron circuit 700, synaptic weight memory
710, first sub-circuit 720, second sub-circuit 730, third
sub-circuit 740, fourth sub-circuit 750, learning counter 731,
learning threshold counter 732, first comparator 733, ran-
dom constant generator 741, potentiating learning processor
742, depressing learning processor 743, input event buffer
744, synapse weight learning system 800, neuron circuit
860, learning circuit 840, second sub-circuit 830, learning
counter 831, learning threshold counter 832, first comparator
833, random constant generator 841, potentiating learning
processor 842, depressing learning processor 843, and input
event buffer 844 of FIG. 1-15 that perform the operations
described in this application are implemented by hardware
components configured to perform the operations described
in this application that are performed by the hardware
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components. Examples of hardware components that may be
used to perform the operations described in this application
where appropriate include controllers, sensors, generators,
drivers, memories, comparators, arithmetic logic units,
adders, subtractors, multipliers, dividers, integrators, and
any other electronic components configured to perform the
operations described in this application. In other examples,
one or more of the hardware components that perform the
operations described in this application are implemented by
computing hardware, for example, by one or more proces-
sors or computers. A processor or computer may be imple-
mented by one or more hardware processing elements or
devices, such as an array of logic gates, a controller and an
arithmetic logic unit, a digital signal processor, a microcom-
puter, a programmable logic controller, a field-program-
mable gate array, a programmable logic array, a micropro-
cessor, or any other device or combination of devices that is
configured to respond to and execute instructions in a
defined manner to achieve a desired result. In one example,
a processor or computer includes, or is connected to, one or
more memories storing instructions or software that are
executed by the processor or computer. Hardware compo-
nents implemented by a processor or computer may execute
instructions or software, such as an operating system (OS)
and one or more software applications that run on the OS, to
perform the operations described in this application. The
hardware components may also access, manipulate, process,
create, and store data in response to execution of the
instructions or software. For simplicity, the singular term
“processor” or “computer” may be used in the description of
the examples described in this application, but in other
examples multiple processors or computers may be used, or
a processor or computer may include multiple processing
elements, or multiple types of processing elements, or both.
For example, a single hardware component or two or more
hardware components may be implemented by a single
processor, or two or more processors, or a processor and a
controller. One or more hardware components may be
implemented by one or more processors, or a processor and
a controller, and one or more other hardware components
may be implemented by one or more other processors, or
another processor and another controller. One or more
processors, or a processor and a controller, may implement
a single hardware component, or two or more hardware
components. A hardware component may have any one or
more of different processing configurations, examples of
which include a single processor, independent processors,
parallel processors, single-instruction single-data (SISD)
multiprocessing, single-instruction multiple-data (SIMD)
multiprocessing, multiple-instruction single-data (MISD)
multiprocessing, and multiple-instruction multiple-data
(MIMD) multiprocessing.

[0300] The methods illustrated in FIGS. 1-15 that perform
the operations described in this application are performed by
computing hardware, for example, by one or more proces-
sors or computers, implemented as described above execut-
ing instructions or software to perform the operations
described in this application that are performed by the
methods. For example, a single operation or two or more
operations may be performed by a single processor, or two
Or more processors, or a processor and a controller. One or
more operations may be performed by one or more proces-
sors, or a processor and a controller, and one or more other
operations may be performed by one or more other proces-
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sors, or another processor and another controller. One or
more processors, or a processor and a controller, may
perform a single operation, or two or more operations.

[0301] Instructions or software to control computing hard-
ware, for example, one or more processors or computers, to
implement the hardware components and perform the meth-
ods as described above may be written as computer pro-
grams, code segments, instructions or any combination
thereof, for individually or collectively instructing or con-
figuring the one or more processors or computers to operate
as a machine or special-purpose computer to perform the
operations that are performed by the hardware components
and the methods as described above. In one example, the
instructions or software include machine code that is directly
executed by the one or more processors or computers, such
as machine code produced by a compiler. In another
example, the instructions or software includes higher-level
code that is executed by the one or more processors or
computer using an interpreter. The instructions or software
may be written using any programming language based on
the block diagrams and the flow charts illustrated in the
drawings and the corresponding descriptions in the specifi-
cation, which disclose algorithms for performing the opera-
tions that are performed by the hardware components and
the methods as described above.

[0302] The instructions or software to control computing
hardware, for example, one or more processors or comput-
ers, to implement the hardware components and perform the
methods as described above, and any associated data, data
files, and data structures, may be recorded, stored, or fixed
in or on one or more non-transitory computer-readable
storage media. Examples of a non-transitory computer-
readable storage medium include read-only memory
(ROM), random-access memory (RAM), flash memory,
CD-ROMs, CD-Rs, CD+Rs, CD-RWs, CD+RWs, DVD-
ROMs, DVD-Rs, DVD+Rs, DVD-RWs, DVD+RWs, DVD-
RAMs, BD-ROMs, BD-Rs, BD-R LTHs, BD-REs, magnetic
tapes, floppy disks, magneto-optical data storage devices,
optical data storage devices, hard disks, solid-state disks,
and any other device that is configured to store the instruc-
tions or software and any associated data, data files, and data
structures in a non-transitory manner and provide the
instructions or software and any associated data, data files,
and data structures to one or more processors or computers
so that the one or more processors or computers can execute
the instructions. In one example, the instructions or software
and any associated data, data files, and data structures are
distributed over network-coupled computer systems so that
the instructions and software and any associated data, data
files, and data structures are stored, accessed, and executed
in a distributed fashion by the one or more processors or
computers.

[0303] While this disclosure includes specific examples, it
will be apparent after an understanding of the disclosure of
this application that various changes in form and details may
be made in these examples without departing from the spirit
and scope of the claims and their equivalents. The examples
described herein are to be considered in a descriptive sense
only, and not for purposes of limitation. Descriptions of
features or aspects in each example are to be considered as
being applicable to similar features or aspects in other
examples. Suitable results may be achieved if the described
techniques are performed in a different order, and/or if
components in a described system, architecture, device, or
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circuit are combined in a different manner, and/or replaced
or supplemented by other components or their equivalents.
Therefore, the scope of the disclosure is defined not by the
detailed description, but by the claims and their equivalents,
and all variations within the scope of the claims and their
equivalents are to be construed as being included in the
disclosure.
What is claimed is:
1. A neuron circuit performing synapse learning on a
plurality of synaptic weight values, the neuron circuit com-
prising:
a first sub-circuit configured to receive an input signal
from a pre-synaptic neuron circuit and determine
whether the received input signal is an active signal
having an active synapse value;
a second sub-circuit configured to compare a first cumu-
lative reception counter of active input signals with a
learning threshold value based on results of the deter-
mination; and
a third sub-circuit configured to:
perform a potentiating learning process based on a first
probability value to set a synaptic weight value of at
least one previously received input signal to an
active value, upon the first cumulative reception
counter reaching the learning threshold value, and

perform a depressing learning process based on a
second probability value to set each of the plurality
of synaptic weight values to an inactive value.

2. The neuron circuit of claim 1, further comprising:

a fourth sub-circuit configured to compare a second
cumulative reception counter of the active input signals
with a firing threshold value based on the results of the
determination,

wherein upon the second cumulative reception counter
reaching the firing threshold value, the fourth sub-
circuit transmits a spike signal to a post-synaptic neu-
ron circuit of the neuron circuit.

3. The neuron circuit of claim 1, further comprising a
synaptic weight memory to store the plurality of synaptic
weight values.

4. The neuron circuit of claim 3, wherein the third
sub-circuit is configured to determine the second probability
value based on a number of active synapses having active
synaptic weight values in the synaptic weight memory as a
result of the potentiating learning process.

5. The neuron circuit of claim 1, wherein the second
sub-circuit comprises a learning counter configured to count
the first cumulative reception counter, the learning counter
being reset upon the first cumulative reception counter
reaching the learning threshold value.

6. The neuron circuit of claim 5, wherein the second
sub-circuit further comprises a learning threshold counter
configured to count the learning threshold value, the learn-
ing threshold value being increased upon the first cumulative
reception counter reaching the learning threshold value.

7. The neuron circuit of claim 2, wherein the fourth
sub-circuit comprises a firing counter configured to count
the second cumulative reception counter, the firing counter
being reset upon the second cumulative reception counter
reaching the firing threshold value.

8. The neuron circuit of claim 4, wherein the third
sub-circuit comprises a random constant generator, and

upon a positive random constant acquired from the ran-
dom constant generator being equal to or less than a
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potentiating learning reference constant calculated by
multiplying an upper limit of the positive random
constant by the first probability value, the third sub-
circuit performs the potentiating learning process.
9. The neuron circuit of claim 8, wherein when the
positive random constant acquired from the random constant
generator is equal to or greater than a depressing leaning
reference constant calculated by multiplying the upper limit
of the positive random constant by the second probability
value, the third sub-circuit performs the depressing leaning
process on each of the plurality of synaptic weight values in
the synaptic weight memory.
10. The neuron circuit of claim 1, wherein the third
sub-circuit comprises an input event buffer storing synapse
information contained in received input signals, and
the third sub-circuit is configured to perform the poten-
tiating learning process on synaptic weight values
respectively corresponding to a preset number of pieces
of the synapse information stored in the input event
buffer in a reverse order to an order in which the pieces
of synapse information are stored.
11. A learning system for a plurality of synaptic weight
values, the learning system comprising:
a learning circuit; and
a neuron circuit configured to receive an input signal from
a pre-synaptic neuron circuit and determine whether the
received input signal is an active signal having an
active synapse value, and upon a first cumulative
reception counter of active input signals reaching a
learning threshold value, the neuron circuit transmitting
a learning request signal to the leaming circuit,

wherein as the learning circuit receives the learning
request signal, the learning circuit performs a potenti-
ating learning process based on a first probability value
to set a synaptic weight value of at least one input
signal previously received by the neuron circuit to an
active value, and

the learning circuit performs a depressing learning pro-

cess based on a second probability value to set each of
the plurality of synaptic weight values to an inactive
value.
12. A learning method in a neuron circuit to learn a
plurality of synaptic weight values between the neuron
circuit and a pre-synaptic neuron circuit, the learning
method comprising:
as an input signal is received from the pre-synaptic neuron
circuit, determining whether the received input signal is
an active signal having an active synapse value;

comparing a first cumulative reception counter of active
input signals with a learning threshold value based on
results of the determination;

when the first cumulative reception counter reaches the

learning threshold value, performing a potentiating
learning process based on a first probability value to set
a synaptic weight value of at least one previously
received input signal to an active value; and

performing a depressing learning process based on a

second probability value to set each of the plurality of
synaptic weight values to an inactive value.

13. The learning method of claim 12, further comprising:

comparing a second cumulative reception counter of
active input signals with a firing threshold value based
on results of the determination; and
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when the second cumulative reception counter reaches the
firing threshold value, transmitting a spike signal to a
post-synaptic neuron circuit of the neuron circuit.

14. The learning method of claim 12, wherein the depress-
ing learning process comprises determining a number of
active synapses having active synaptic weight values among
a plurality of synapses as a result of the potentiating learning
process, and determining the second probability value based
on the determined number of active synapses.

15. The learning method of claim 12, further comprising:

initializing the first cumulative reception counter when

the first cumulative reception counter reaches the learn-
ing threshold value.

16. The learning method of claim 15, further comprising:

increasing the learning threshold value when the first

cumulative reception counter reaches the learning
threshold value.

17. The learning method of claim 13, further comprising:

initializing the second cumulative reception counter when

the second cumulative reception counter reaches the
firing threshold value.

18. The learning method of claim 12, wherein the poten-
tiating learning process comprises acquiring a positive ran-
dom constant and performing the potentiating learning pro-
cess when the acquired random constant is equal to or less
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than a potentiating learning reference constant calculated by
multiplying an upper limit of the random constant by the first
probability value.

19. The learning method of claim 12, wherein the poten-
tiating learning process comprises acquiring a positive ran-
dom constant for each of the plurality of synaptic weight
values and performing the potentiating learning process on
each of the plurality of synaptic weight values when the
acquired random constant is equal to or greater than a
depressing learning reference constant calculated by multi-
plying an upper limit of the random constant by the second
probability value.

20. The learning method of claim 12, further comprising
storing synapse information contained in received input
signals,

wherein the potentiating learning process comprises per-

forming a potentiating learning process on synaptic
weight values respectively corresponding to a preset
number of pieces of previously stored synapse infor-
mation in a reverse order to an order in which the pieces
of synapse information are stored.

21. A non-transitory computer-readable recording
medium storing instructions, which when executed by one
or more processing devices, cause the one or more process-
ing devices to perform the learning method of claim 12.
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