
Printed by Jouve, 75001 PARIS (FR)

(19)
E

P
3 

32
4 

34
3

A
1

TEPZZ¥¥ 4¥4¥A_T
(11) EP 3 324 343 A1

(12) EUROPEAN PATENT APPLICATION

(43) Date of publication: 
23.05.2018 Bulletin 2018/21

(21) Application number: 16306525.3

(22) Date of filing: 21.11.2016

(51) Int Cl.:
G06N 3/04 (2006.01) G06N 3/08 (2006.01)

(84) Designated Contracting States: 
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB 
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO 
PL PT RO RS SE SI SK SM TR
Designated Extension States: 
BA ME
Designated Validation States: 
MA MD

(71) Applicants:  
• Centre National de la Recherche Scientifique

75016 Paris (FR)
• Consejo Superior De Investigaciones Científicas 

- 
CSIC
41013 Sevilla (ES)

(72) Inventors:  
• THORPE, Simon

31540 ST FELIX LAURAGAIS (FR)
• MASQUELIER, Timothée

31000 TOULOUSE (FR)
• MARTIN, Jacob

31300 TOULOUSE (FR)
• YOUSEFZADEH, Amir Reza

41900 SEVILLE (ES)

(74) Representative: Priori, Enrico et al
Marks & Clerk France 
Conseils en Propriété Industrielle 
Immeuble «Visium» 
22, avenue Aristide Briand
94117 Arcueil Cedex (FR)

(54) UNSUPERVISED DETECTION OF REPEATING PATTERNS IN A SERIES OF EVENTS

(57) A method of performing unsupervised detection
of repeating patterns in a series (TS) of events (E21, E12,
E5 ...), comprising the steps of:
a) Providing a plurality of neurons (NR1 - NRP), each
neuron being representative of W event types;
b) Acquiring an input packet (IV) comprising N succes-
sive events of the series;
c) Attributing to at least some neurons a potential value
(PT1 - PTP), representative of the number of common
events between the input packet and the neuron;
d) Modify the event types of neurons having a potential
value exceeding a first threshold TL; and
e) generating a first output signal (OS1 - OSP) for all
neurons having a potential value exceeding a second
threshold TF, and a second output signal, different from
the first one, for all other neurons.

A digital integrated circuit configured for carrying out
such a method.
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Description

Object of the invention

[0001] The invention relates to a method, a digital circuit and a computer program product for performing unsupervised
detection of repeating patterns in a series of events. It belongs to the technical field of machine learning and is more
particularly to the sub-field of neural network. It lends itself to several applications including - but not limited to - video
stream processing (e.g. Dynamic Vision Sensors) and audio processing (e.g. artificial cochleae).

Prior art

[0002] One of the most striking features of the cerebral cortex is its ability to wire itself in order to adapt to its environment.
Sensory substitution or addition experiments suggest that neurons can make sense of any kind of sensory data, pre-
sumably using the same basic mechanisms. One such mechanism is supposed to be the so called spike-timing-dependent
plasticity (STDP). It has been shown that artificial neurons equipped with this mechanism can detect repeating patterns
of input "spikes", in an unsupervised manner, even when those patterns are embedded in noise. See e.g.:

-  Masquelier, T., Guyonneau, R. & Thorpe, S. J. Spike timing dependent plasticity finds the start of repeating patterns
in continuous spike trains. PLoS One 3, e1377 (2008).

- Masquelier, T., Guyonneau, R. & Thorpe, S. J. Competitive STDP-Based Spike Pattern Learning. Neural Comput
21, 1259-1276 (2009).

- Gilson, M., Masquelier, T. & Hugues, E. STDP allows fast rate-modulated coding with Poisson-like spike trains.
PLoS Comput. Biol. 7, e1002231 (2011).

[0003] This amazing ability has inspired a number of neuromorphic algorithms and architectures, used for data process-
ing and more particularly for temporal pattern recognition.
[0004] For instance WO 2012/054109 discloses an artificial neural network having a plurality of synapses, each syn-
apses having an adjustable weight which takes discrete values and changes in discrete steps with a probability depending
on a time elapsed between a pair of spikes originating from a post-synaptic neuron circuit and a pre-synaptic neuron
circuit connected to it. Operating such an artificial neural network is computationally intensive, as updating the synapses
weights (essential for learning) requires multiply-accumulate operations, and multiplications are known to be the most
space and power-hungry operations in the digital implementation of artificial neural networks.
[0005] WO2013119867 discloses an artificial neural network wherein synapses do not have weights - or, equivalently,
have binary weights: a synapse is then either existing or non-existing. Despite this simplification, operating this artificial
neural network remains computationally intensive, as it requires measuring and applying variable delays to input and
output spikes.
[0006] Moreover, artificial neural networks according to the prior art generally suffer from a lack of robustness: they
may fail to detect a pattern it if is slightly distorted, or if the event acquisition rates varies.
[0007] More particularly, in current STDP-based approaches, fine-tuning of the numerous parameter of the rule is
required. This also adversely affects robustness. For instance, the ratio between weight reinforcement and weight
depression is crucial: if too large, most weights end up saturated, leading to very active but non-selective neurons. If
too low, the weights tend to decrease until the neurons do not reach their threshold anymore, which is a dead end.
[0008] The invention aims at overcoming these drawbacks of the prior art by providing a method and an architecture
for performing unsupervised detection of temporal patterns which is simple and economical to implement (in terms of
computing time, energy consumption and/or silicon surface), effective and robust.
[0009] According to some embodiments of the invention, these aims are achieved thanks to the following technical
features:

- Input events ("spikes") are grouped into fixed-size packets. The temporal order between events of a same packet
is lost, which may seem a drawback, but indeed increases robustness as it eases the detection of distorted patterns
and makes the method insensitive to changes of the event rate

- Weighted or un-weighted synapses are replaced by set of binary weights. Learning only requires flipping some of
these binary weights and performing sums and comparisons, thus minimizing the computational burden.

- The number of binary weights which is set to "1" for each neuron does not vary during the learning process. This
avoids ending up with non-selective or non-sensible neurons.
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Description of the invention

[0010] An object of the present invention is a method of performing unsupervised detection of repeating patterns in a
series of events, each event of the series belonging to an event type of an M-element set of event types, the method
comprising the steps of:

a) Providing a plurality of neurons, each neuron being representative of a W-element subset of the set of event
types, with 1≤W≤M;
b) Acquiring an input packet comprising N successive events of the series, with 1≤N≤M;
c) Attributing to at least some neurons a potential value, representative of the number of events of the input packet
whose types belong to the W-element subset of the neuron;
d) for neurons having a potential value exceeding a first threshold TL, replacing nswap≥1 event types of the corre-
sponding W-element subset, which are not common to the input packet, with event types comprised in the input
packet and not currently belonging to said W-element subset; and
e) generating an output signal indicative of neurons having a potential value exceeding a second threshold TF,
greater than the first threshold;

steps b) to e) being repeated a plurality of times.
[0011] In a preferred embodiment, nswap and TL are set independently for different neurons. More preferred, nswap
and TL are respectively decreased and increased as the potential value of the neuron increases.
[0012] According to further embodiments of the method, each neuron is implemented by a Boolean vector having M
components, each component being associated to a different event type of said set, W of said components taking a first
Boolean value and (M-W) of said components taking a second Boolean value.
[0013] Preferably, step a) comprises performing random initialization of the neurons.
[0014] More preferably, step b) comprises filling a M-element Boolean vector, called input vector, each element of
which is associated to a different event type of said set, by setting at the first Boolean value elements associated to
event types comprised in the input packet, and at the second Boolean values elements associated to event types not
comprised in the input packet.
[0015] Even more preferably, step c) comprises comparing (CMP) element-wise the input vector and the vectors
implementing neurons.
[0016] Optionally, the method further comprises a step f) of generating a series of events from the output signals
generated at step e), and repeating steps a) to e) by taking said series as input.
[0017] Another object of the invention is a digital integrated circuit configured for carrying out such a method.
[0018] Yet another object of the invention is a computer program product, stored on a non-volatile computer-readable
data-storage medium, comprising computer-executable instructions to cause a computer to carry out such a method.

Brief description of the drawings

[0019] Additional features and advantages of the present invention will become apparent from the subsequent de-
scription, taken in conjunction with the accompanying drawings, which show:

- Figure 1, a block diagram of an implementation of the inventive method; and
- Figures 2A, 2B and 3, plots illustrating the technical results of the invention.

Embodiments of the invention

[0020] The inventive method allows analyzing a series of "events". In actual digital implementations, an event may
typically be expressed by a fixed-length binary word. For instance, if 10-bit words are used, there will be 210=1024
different event types. Each event type may represent e.g. the luminance values of a set of pixels of an image detector,
a sound in an audio stream, etc. Let {E1 ... EM} be the M-element set of allowable event types, and TS be a list of
successive events, each event of TS belonging to an event type of the set. For the sake of simplicity, each event of TS
will be identified by its event type. Therefore, it will be possible to write e.g. TS = (E21, E12, E5 ...).
[0021] The list TS does not need to have timestamps, but it needs to be ordered. It is possible that some events are
in fact simultaneous or quasi-simultaneous, in which case their order in the list is partially arbitrary.
[0022] A "pattern" is constituted by a group of nearby events that occur repeatedly within the series TS, even if different
repetitions slightly differ, e.g. due to noise (some events can be missing, or additional events can be interleaved). The
inventive method aims at detecting such patterns, otherwise stated at generating a distinguishable output signal when
a pattern occurs. The detection is performed by unsupervised learning, i.e. it is not required to enter a list of the pattern
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to be detected: after some presentations, the algorithm learns alone to recognize repeating patterns within the input
series TS.
[0023] As illustrated on figure 1, the series TS is read sequentially, until a predetermined number N of events has
been acquired, forming a "packet" PK. The series can then be seen as a succession of packets.
[0024] In an advantageous embodiment of the invention, the acquired packet is used to fill a M-element Boolean
vector, or array, called input vector IV, each element of which is associated to an event type: E1, E2... EM. Initially, all
the elements of the input vector IV are set to "0"; whenever an element "Ei" is acquired, the corresponding element of
the input vector takes the value "1 ". At the end of the acquisition of a packet, the input vector IV will therefore contain
N "ones" and M-N "zeros". The following table 1 shows an example of an input vector for the case M=20, N=4, PK =
{E3, E5, E10, E12}:

[0025] It is interesting to note that the input vector does not keep track of the order of the events within the packet. As
explained above, this is an important feature of the invention, and does contribute to its robustness.
[0026] It will be understood that the size N of a packet PK has to be smaller - typically by at least a factor of 10 - than
the number M of event types (albeit this is not the case for the example of table 1, which is only provided as an illustration).
Indeed, the inventive method does not allow taking into account the presence of several events of a same type within
a same packet, therefore such a situation should be exceptional.
[0027] The detection of patterns is performed using a set of P "neurons", each associated to a set of W unique event
types, i.e. to a subset of the M-element set of all possible event types. Typically, W is smaller than the number N of
events in a packet; the number P of neuron may advantageously be equal to M, for reasons which will be explained
furthers, but this is by no mean essential.
[0028] According to an advantageous embodiment of the invention, each neuron NR1, NR2...NRi ...NRP is represented
by a M-element Boolean vector, or array, each element WGij of which is associated to an event type Ej; this is analogous
to the representation of an event packet by the input vector. Neurons are initialized by randomly setting W of their
elements to "1 ", while the remaining (M-W) elements are at "0". Elements of the neuron vector having a value of "1"
are also called "weights".
[0029] Whenever an event packet PK is acquired, it is compared (reference CMP on figure 1) to any one of the P
neurons. Advantageously, the comparison consists in performing a logical AND between corresponding elements of the
input vector and of each neuron. This allows identifying events of the input packet corresponding to the event types of
each neuron ("matches"). The number of matches for a neuron determines its "potential" PT1, PT2...PTi...PTP. Table
2 illustrates an example, based on the input vector of table 1, where W=4. Matches are indicated in bold characters,
and the potential values are underlined.

Table 1

E 1 E 2 E 3 E 4 E 5 E 6 E 7 E 8 E 9 E 10 E 11 E 12 E 13 E 14 E 15 E 16 E 17 E 18 E 19 E 20

0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0
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[0030] In the exemplary embodiment discussed here, a potential value is attributed to each one of the neuron, but this
is not necessarily the case. The potential is not necessarily equal to the number of matches, as in this exemplary
embodiment. More generally, it may be any value representative of this number, e.g. a suitable, preferably monotone,
function thereof.
[0031] If all the events occur independently and with the same probability, then the potential has a hypergeometric
distribution with N draws from a population of size M containing W successes (or, equivalently, W draws from a population
of size M containing N successes). If N<<M (which is possible for applications where M is large), then the probability of
the potential being greater or equal than a threshold T quickly drops with T. For example with M=1024, N=64 and W=32,
then the probability Pr of the potential being greater or equal than 9 is 10-5 approximately. That being said, for most real
applications input events will not occur independently, and their frequencies may also differ.
[0032] All the neurons whose potential is greater or equal than a first, or "learning", threshold TLi (index "i", which will
be omitted when this does not cause confusion, is used because the threshold may be - and preferably is - different for
each neuron) are modified according to a learning rule (functional bloc LR on figure 1). The idea is that only neurons
which are already sufficiently similar to the input packet should be trained in order to recognize it.
[0033] The training is performed by swapping a certain number nswap of - randomly chosen - unused weights of the
neurons (i.e. "ones" of the neuron vector which do not coincide with "ones" of the input vectors) with - also randomly
chosen - active but unused inputs (i.e. "zeros" of the neuron vector which coincide with "ones" of the input vector). In
other words, nswap event types of the neuron vector, which are not common to the event types of the input packet, are
exchanged with event types comprised in the input packet and not currently belonging to the neuron. For example, taking
nswap=1, the weight of the position #1 of neuron NR2, which is unused, is moved to position #10 of the same neuron,
which corresponds to an active but unused input.
[0034] Table 3 shows the vector of the second neuron NR2 after the swapping.
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[0035] It is clear that this makes the neuron’s weights more similar to the current input packet. Hence if the same
packet arrives again, the potential of neuron NR2 will reach 4. This rule is similar to the biological learning rule known
as spike-timing-dependent plasticity (STDP), which reinforces the connections with afferents that contributed in triggering
a postsynaptic spike. Yet with STDP the weight modification is subtle but concerns all contributing afferents, while with
the inventive rule the weight modification is drastic (i.e. from 0 to 1), but concerns only nswap afferents. Importantly, with
the inventive swapping rule, the number of non-zero weights is kept constant for each neuron.
[0036] When the potential of a neuron reaches or exceeds a second, or "firing", threshold TF, the neurons emits an
output signal (it "fires"). According to an advantageous implementation of the invention, each neurons has a binary
output OS1, OS2...OSi...OSP which normally takes a "0" value, and which commutes to "1" when the threshold TF is
reached. Advantageously, the second ("firing") threshold TF is the same for all the neurons and is at least equal to the
highest possible value for the first ("learning") threshold TL. The output signal may take any alternative format, provided
that it allows identifying the neurons which have fired.
[0037] As it will be demonstrated further, with reference to figures 2A, 2B and 3, thanks to this learning rule some
neurons will gradually become "selective" to any repeating input pattern, that is they will reach their second thresholds
and fire when their "preferred" pattern appears, but hardly ever otherwise.
[0038] It has been found that it is useful to vary both the learning rate nswap, and the first threshold TL independently
for each neuron. When learning begins, a relatively low threshold is necessary to start moving the weights. On the same
ground, one wants to move many weights, in order to rapidly forget the arbitrary random initial weights, and rapidly shape
them according to the input. As learning progresses, the potentials caused by the repeating patterns tend to increase.
This means one can safely increase TL up to a maximum value Tmax without missing the patterns, yet decreasing the
false alarm rate. At this point it is also useful to decrease the learning rate, in order to secure the learned patterns. The
learning speed nswap can decrease until nmin=0 to completely stop learning, or until nmin =1 if one still wants to slowly
adapt to the possibly changing input patterns.
[0039] According to a particular embodiment of the invention, the following heuristic rule is proposed to decrease nswap
and increase TLi:

TLi is initialized at a same value Tmin for all "i", and then, whenever the i-th neuron NRi reaches its learning threshold
TLi:

• TLi := min(Tmax, PTi)
• nswap := max(nmin, nswap - dnswap*(PTi-TLi))

where PTi is the potential of NRi and dnswap is a parameter which tunes the decrease speed (e.g. 1/4W).

[0040] Advantageously, the second (firing) threshold is taken equal to the maximal value taken by the learning threshold:
TF=Tmax.
[0041] Interestingly, the outputs of the firing neurons also form a series of events, just like TS. More precisely, the
firing on each one of the P neurons will constitute an event, and there will be P possible event types. Some of these
events may happen simultaneously, if several neurons, trained to detect a same pattern, fire at the same time. This
means that it is possible to stack multiple neuron layers using exactly the same algorithm; this is particularly easy if P=M.
Neurons in higher layers will learn "meta-patterns", that is combinations of patterns. Besides, it is worth mentioning that
neurons typically fire much less frequently than their inputs. This means that packets in higher layers will need more
time to be filled, which corresponds to longer integration times.
[0042] The inventive method has been tested on synthetic data. Events have been generated randomly using inde-
pendent Poisson processes (gray dots on figure 2A). On top of this activity, three repeating patterns have been introduced
("+", "x" and black dots on the same figure). The patterns consist in 16 nearly simultaneous events of different kinds.
They repeat at irregular intervals.
[0043] The parameters used for this simulation were: 
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(mean frequency of the inhomogeneous Poisson processes).
[0044] Figure 2B shows the output events, generated by neurons when their potential reaches TF. Neurons tend to
be active if and only if some patterns repeat (that is, the random gray input spikes generate virtually no output activity).
The most selective neurons for each pattern are those with the maximum number of "good weights" (i.e. corresponding
to the pattern’s 16 events), among the neurons that have reached the final threshold Tmax. These are very stable neurons
which will not forget what they have learned easily. Learning only takes a few presentations (∼5). After learning most
patterns are detected, and false alarms are very rare.
[0045] The firing threshold TF is equal to 9. According to the hypergeometric law, the probability of false alarm per
packet is thus ∼7.10-5, that is one every ∼42 seconds. It is worth mentioning that if the task is to detect larger patterns
(e.g. 32 events instead of 16), then one can use larger thresholds, leading to much lower false alarm probabilities, e.g.
TF=18 leads to one false alarm every 20 000 years. It is an advantageous feature of the invention that the false alarm
probability for a given value of the firing threshold can be analytically computed.
[0046] In another simulation, a single pattern was used, and the number of its presentations during 1 second of input
was varied. The probability Pr of having at least one selective neuron was computed as a function of the number of
presentations and for three different values of the number of neurons, P (1024, 2048 and 4096). A selective neuron is
defined as having at least 8 good weights (chance level = 0.5), and having reached the final threshold Tmax at t = 1 s.
Figure 3 shows the results. Learning is very fast: with 1024 neurons, 7 presentations are needed to reach a probability
of 1, but with 4096 neurons, 4 presentations are enough.
[0047] The invention has been described with respect to a specific embodiment, but it is not limited to it. For instance,
different implementations could be used for the input vector and for neurons.
[0048] The inventive method may be carried out using a suitably programmed computer - possibly including a graphic
processing unit (GPU) to speed-up execution. A computer program comprising computer-executable instructions to
cause a computer system to carry out the inventive method may be stored on a non-volatile computer-readable data-
storage medium, e.g. a flash memory. Alternatively, the inventive method may be carried out using dedicated hardware,
typically a digital integrated circuit, either specific (ASIC) or based on programmable logic (e.g. a Field Programmable
Gate Array, FPGA).

Claims

1. A method of performing unsupervised detection of repeating patterns in a series (TS) of events (E21, E12, E5 ...),
each event of the series belonging to an event type of an M-element set of event types, the method comprising the
steps of:

a) Providing a plurality of neurons (NR1 - NRP), each neuron being representative of a W-element subset of
the set of event types, with 1≤W≤M;
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b) Acquiring an input packet comprising N successive events of the series, with 1≤N≤M;
c) Attributing to at least some neurons a potential value (PT1 - PTP), representative of the number of events of
the input packet whose types belong to the W-element subset of the neuron;
d) for neurons having a potential value exceeding a first threshold TL, replacing nswap≥1 event types of the
corresponding W-element subset, which are not common to the input packet, with event types comprised in the
input packet and not currently belonging to said W-element subset; and
e) generating an output signal (OS1 - OSP) indicative of neurons having a potential value exceeding a second
threshold TF, greater than the first threshold;

steps b) to e) being repeated a plurality of times.

2. The method of claim 1 wherein nswap and TL are set independently for different neurons.

3. The method of claim 2 wherein nswap and TL are respectively decreased and increased as the potential value of the
neuron increases.

4. The method of any of the preceding claims wherein each neuron is implemented by a Boolean vector having M
components (WGij), each component being associated to a different event type of said set, W of said components
taking a first Boolean value and (M-W) of said components taking a second Boolean value.

5. The method of claim 4 wherein step a) comprises performing random initialization of the neurons.

6. The method of any of claims 4 or 5 wherein step b) comprises filling a M-element Boolean vector, called input vector
(IV), each element of which is associated to a different event type of said set, by setting at the first Boolean value
elements associated to event types comprised in the input packet, and at the second Boolean values elements
associated to event types not comprised in the input packet.

7. The method of claim 6 wherein step c) comprises comparing (CMP) element-wise the input vector and the vectors
implementing neurons.

8. The method of any of the preceding claims further comprising a step of

f) generating a series of events from the output signals generated at step e), and repeating steps a) to e) by
taking said series as input.

9. The method of claim 8 wherein the number P of neuron is equal to the number M of event types.

10. A digital integrated circuit configured for carrying out a method according to any of the preceding claims.

11. A computer program product, stored on a non-volatile computer-readable data-storage medium, comprising com-
puter-executable instructions to cause a computer to carry out a method according to any of claims 1 to 9.
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