University of Sevilla
Department of Electronics and Electromagnetism

Ph.D. Dissertation

Study, Design, Implementation, and Test of VLSI Retinae Sensitive to Spatial and Temporal Contrast

By Juan Antonio Leñero Bardallo

Advisors:

Dr. Bernabé Linares Barranco
Dr. Teresa Serrano Gotarredona

Seville, 2010
To my parents
ACKNOWLEDGEMENTS

This dissertation is the result of my work at the Sevilla Microelectronics Institute during four years. I would like to be thankful to my thesis advisors, Bernabé Linares and Teresa Serrano. They have helped me and they have conducted my work during all the time I have been elaborating my thesis. Without their help, this document would not have been possible.

All my work at the Sevilla Microelectronics Institute during this time has been funded by a JAE scholarship. Thanks to this program, I also had the opportunity of spending two months in the University of Oslo, researching at the Department of Informatics with Dr. Philipp Häfliger.

I also would like to mention my parents and brothers for their support and care during all this time.

Finally, I have to thank my colleagues at the Sevilla Microelectronics Institute. I have learnt a lot of valuable skills from them. With their company, all this time in Sevilla has been really enjoyable.
Nowadays, vision systems are commonplace and widely used to perform plenty of different tasks. For example, we are recorded when we park our car in a car place or when we walk though an airport. Everybody is used to such kind of devices. There is also an huge potential market, specially related to cell phones. Almost all of them have embedded vision systems. All these imagers are based on frames (frame-based devices). With regard to artificial vision, we usually speak about machine vision systems (systems made up by cameras and actuators) that also perform specific tasks like surveillance or remote control. However, such devices work in very controlled environments in a repetitive way.

Frame-based devices have inherent limitations. Their bandwidth is limited by the sample rate. They are always transmitting data periodically that can be very redundant if there is no changes in the scene (frames are always transmitted if the system is working). They do not process the information and a lot of redundant data is involved. Their dynamic range is reduced because AGC (Automatic Gain Control) is global to the pixel matrix. Each pixel has the same gain and the same integration time. The capacity to integrate charge is also limited. In unsupervised environments, bandwidth and dynamic range can limit the performance of the whole vision system.

On the other hand, biological systems are frameless. They are massively parallel and data driven. Such systems are structured in layers. Each layer performs one specific task and send the relevant information to the next layers. Eyes are optimized to extract the relevant information from the visual scene. If we compare conventional systems to bio-inspired ones, the advantages of the second ones are obvious.

Neuromorphic engineering is based on the belief that emulating such biological systems, we could develop electronic devices with similar features. The rise of VLSI systems leads to systems with pixels with an acceptable fill factor and level of complexity.

In this thesis, we will describe two AER (Address Event Representation) vision systems that imitate two specific retinal functionalities. The first one detects the spatial contrast. The second one is sensitive to temporal contrast. Both of them are spike-based devices and they have two separate channels to process the negative and positive contrast (signed output). Detection of spatial and temporal contrast are two very important tasks that the human retina can perform. With the information of the spatial contrast, we can detect edges and shapes. With the detection of the temporal contrast, we can detect movement, relative depths and group objects.

The first sensor (described in chapter 4) overcomes some of the drawbacks of prior AER spatial contrast imagers. It uses a new calibration system to reduce mismatch, it also has signed...
output, and a new thresholding mechanism that allows to remove residually mismatch after calibration. It also has an optional TFS (time-to-first spike) mode that combines the advantages of frame-based systems and AER ones. Its main features are very low FPN (0.6%), good response time (0.1-10ms), high sensitivity and very low power consumption (0.66-6.6mW). A test prototype of 32 x 32 pixels was fabricated.

The second sensor (described in chapter 5) is specially suitable for high speed applications. It has very low latency (3.5μs) and high bandwidth (up to 8KHz). It uses amplifiers after the logarithmic photoreceptor to reduce the retina response time and increase its sensitivity to spatial contrast. This prototype has good fill factor and has 128 x 128 pixels. It also has two independent channels to process positive and negative events independently.

The thesis is structured into 6 chapters. Chapter 1 describes current trends in image design and compares the features of conventional imagers to the ones of bio-inspired sensors. It also explains the state of the art and establishes a comparison between the more relevant AER imagers presented during the last few years. Chapter 2 presents the *Stochastic I-Pot*, a powerful circuitry to generate precisely programmable bias currents. Chapter 3 explains thoroughly the new calibration system and its possible applications to reduce mismatch effects in large neuromorphic arrays. Chapter 4 presents the new AER spatial contrast vision sensor. The complete circuitry is explained. Detailed experimental results are also provided. Chapter 5 describes the new AER temporal contrast vision sensor. Circuitry and experimental results are displayed. Finally, in chapter 6, we draw some conclusions about the present and the possible future work.
CHAPTER 1

Introduction

1.1 Conventional Vision Systems Based on Frames

In the last ten years, sales of digital cameras has grown incredibly. The huge potential mar-
et and the raise of cell phones has driven a very fast development in electronic imager design. This has also led to improved and cheaper imagers, with very small pixels. This tendency is con-
tinuing. Nowadays, we usually speak about the number of megapixels or as figure of merit.

All these conventional vision systems are based on frames. A frame is an 2D matrix with
elements that represent the intensities and color of the visual scene under observation during a
period of time. Video data consists of a stream of frames taken with a fixed frequency. Frame-
based systems are commonplace and sometimes when we speak about vision systems they are
taken for granted. Today’s CCDs and CMOS imagers are frame-based devices.

The main advantage of these devices is that they use simple and small size pixels. A small
pixel implies high resolution, large fill factor and low cost. Such advantages are inherent to frame-
based devices. Another point to consider is that frames are compatible with all the commercial
frame-based displays.

However, frames have some drawbacks to take into account. Pixel bandwidth is limited by
the frame rate. In conventional systems, there is a trade-off among system bandwidth, frame rate,
sensor sensitivity, and the scan period. The frame rate ($\frac{1}{T_{frame}}$) is the number of frames trans-
mitted per unit of time. System bandwidth is the maximum amount of data that our system can
process per unit of time. The scan period of time that pixels are sensing photo current
($T_{scan} \leq T_{frame}$) and we usually can adjust it. Sensitivity is the minimum detectable illumination
level during the scan period. Frame-based systems accumulate charge (in a capacitor or a photog-
gate) during the scan period. After this, charge at the photogate or the capacitor is read and reset-
ted. If the scan period is too low, the amount of charge integrated will be very low. For this reason,
typically conventional systems usually need to work in environments with good and controled
illumination conditions to achieve high speed without loosing sensitivity. If we increase frame
rate, the amount of output data will be increased. We cannot increase the frame rate arbitrarily
because system bandwidth limits the amount of data that the sensor can process. Temporal
changes in the scene cannot be detected in the time between two different frames.
Chapter 1: Introduction

Another disadvantage is redundancy. Pixels are continuously scanning and sending information, even if there is no new information to transmit. This leads to a huge load of redundant data. Finally, AGC (Automatic Gain Control) is usually global in frame-based systems. Thus, gain control is not properly adjusted when there is intrascene variations of illumination. For this reason, it is very important to create a good scene illumination in machine vision. In conclusion, limited bandwidth, identical gain for all the pixels and redundancy are assumed for conventional vision systems.

1.1.1 Charge-Coupled Devices

During several years the predominant technology for optical imaging applications has been the charge-coupled device (CCD) [18]. CCD technology has revolutionized the field of digital imaging by enabling diverse applications in consumer electronics, scientific imaging and computer vision. Its advantages are high sensitivity, high resolution, large dynamic range, and large array size. CCD is a very mature and developed technology. CCD imagers provide images with excellent quality and are still the dominant imaging technology.

A Charge-Coupled Device (CCD) is an image sensor (see Figure 1.1), consisting of an integrated circuit containing an array of linked, or coupled, MOS capacitors sensitive to light. MOS capacitors (also called photogates) are operated in deep depletion on a continuous insulator layer over the semiconductor substrate. Under the control of an external circuit, each capacitor can transfer its electric charge to one of its neighbors as can be seen in Figure 1.1.

There are three conventional architectures: full-frame, frame-transfer and interline. They basically differ on their approach to the problem of shuttering or how the charge is transferred from the photogates.

In a full-frame device, all of the image area is active and there is no electronic shutter. A mechanical shutter must be added to this type of sensor or the image will smear (accumulated charge loss) as the device is clocked or read out. It is a useful choice when light has to be collected accurately.

Frame-transfer architectures are made with an opaque mask (typically aluminium). Half of the pixel area is covered with this mask. The charge is quickly transferred from the photogates to this opaque region with little smear percent. Once the charge has been transferred, it can be read...
out slowly and the active area can be integrating a new frame at the same time. The main drawback of this architecture is that it requires twice the silicon area than a full-frame device.

In the interline architecture there is a mask over each column of the image sensor, so only one pixel shift has to occur to transfer charge from the image area to the storage area. The disadvantage of the scheme is that fill factor is reduced 50%. Adding special microlenses over the opaque mask, light can be directed away of the opaque region to the active area increasing the fill factor. With this approach, charge can be transferred in the order of microseconds with a very low smear. This is the dominant architecture that we can find in consumer CCD cameras.

The choice of architecture comes down to one of utility. If the application cannot tolerate an expensive, failure-prone, power-intensive mechanical shutter, an interline device is the right choice. Consumer snap-shot cameras have used interline devices. On the other hand, for those applications that require the best possible light collection and issues of money, power and time are less important, the full-frame device is the right choice. Astronomers tend to prefer full-frame devices. The frame-transfer falls in between and was a common choice before the fill-factor issue of interline devices was addressed. Today, frame-transfer is usually chosen when an interline architecture is not available, such as in a back-illuminated device.

1.1.2 The CMOS Sensor

CMOS sensors, also known as Active Pixel Sensors (APS), have been studied since the 1980s as an alternative to CCD technology. APS technology is now beginning to enable new applications in digital imaging by offering improved performance relative to CCD technology in the areas of low-power operation, high speed and ease of integration.

An APS is an imager in which every pixel includes at least one active transistor. Transistors may operate as both amplifier and buffer to isolate photogenerated charge from the large capacitance of the common output line. Any photodetector can be used for this approach: photo diodes or photogates. APS pixels usually operate in charge integration mode, but may operate with photo transistors as well. Pixels are implemented with circuitry shared by pixels in the same row, and other circuitry by the same column. At the end of each column there is an integrated amplifier to read out the selected pixel.

Figure 1.2 shows an APS with a photo diode. Light causes an accumulation of charge on the capacitance of the photo diode photo current that depends on light intensity. Transistor, M_1, is a switch that resets the device. M_2 is a source follower that allows to observe the pixel voltage without removing the accumulated charge. M_3 acts as a switch to select one single pixel of one column to be read.

The primary motivation for developing CMOS-based imagers is the ease of integration and the ability to incorporate signal conditioning circuitry and even image processing circuitry into the same device. APS systems offer compact size, light weight, low cost, and low power consumption. Despite these advantages, CCD still remains the dominant imaging technology. The main reason is that CCD is a very mature technology with specialized and optimized fabrication processes that provide images with excellent quality, higher sensitivity and higher dynamic range.

1.1.3 Color Cameras

Digital color cameras generally use a Bayer mask over the CCD or the APS as is depicted in Figure 1.3. Each square of four pixels has one filtered red, one blue, and two green (the human
eye is more sensitive to green than either red or blue). The result of this is that luminance information is collected at every pixel, but the color resolution is lower than the luminance resolution.

Better color separation can be reached by three-CCD devices (3CCD) and a dichroic beam splitter prism, that splits the image into red, green and blue components. Each of the three CCDs is arranged to respond to a particular color. Some semi-professional digital video camcorders (and most professional camcorders) use this technique. Another advantage of 3CCD over a Bayer mask device is higher quantum efficiency (and therefore higher light sensitivity for a given aperture size). This is because in a 3CCD device most of the light entering the aperture is captured by a sensor, while a Bayer mask absorbs a high proportion (about 2/3) of the light falling on each CCD pixel.

The Foveon X3 sensor presents another approach to obtain color images. It is a CMOS image sensor for digital cameras, designed by Foveon, Inc. It uses an array of photosites, each of which consists of three vertically stacked photodiodes, that are organized in a two-dimensional grid (as is shown in Figure 1.4). Each of the three stacked photodiodes responds to different wavelengths of light, because they have a different spectral sensitivity curve. This is due to the fact that different wavelengths of light penetrate silicon to different depths. The signals from the three photodiodes are then processed, resulting in data that provides the three additive primary colors, red, green, and blue.

1.2 Bio-inspired Systems and Neuromorphic Engineering

If we compare biological vision systems to frame-based systems, the first ones have clear advantages over the artificial ones. Biological vision systems are very complex and have amazing capabilities [4]. The human retina contains about 100 million photoreceptors. It has a dynamic range of at least 10 decades that allows to detect dim starlight (it can sense the absorption of one single photon per integration time) to direct sunlight (it saturates at a 100 photons per integration
Fig 1.3: (a) The Bayer arrangement of color filters on the pixel array of an image sensor. (b) Cross-section of the sensor.

Fig 1.4: Color absorption in silicon and the Foveon X3 sensor.
time) [50]-[51]. Under ideal conditions, humans can detect a 0.5-percent change in mean intensity. The human retina can resolve 1 arc minute (1/60 degree) at the fovea, a small specialized region in the center of the retina where the cones are extremely small and are packed densely. Our eyes are also sensitive to temporal changes in the image. The integration time of the primate visual system is on the order of 0.1 second. Our eyes are sensitive to the wavelength of light. The human eye has several 10 million photoreceptors and the density of photoreceptors in the center of the visual fields as high as 150,000 photoreceptors per square-millimeter. Photoreceptor pitch goes down to about 2.6μm.

Looking at the state of the art, machine vision has only certain features that are better when they are used in very controlled environments. Biological vision systems perform efficiently real time tasks under very different conditions and are quite different to frame-based systems. Biological systems are not based on frames. They are continually detecting information. They are also massively parallel and data driven. Such systems present low redundancy, high speed response and high dynamic range. Human eyes has also high power efficiency. However, their most important feature is the possibility of extraction of relevant information from the visual scenes and transmit it to the brain in an accurate way. They are estructured in layers of neurons connected between them. Each layer perform a certain task like spatial or temporal contrast detection. To extract the relevant information of the scene, a spatio-temporal filtering operation is done. This way, temporal and spatial redundancy is removed. Figure 1.5 shows an example of the operation of spatial filtering done in the human eye before transmitting the visual data to the brain. On the left side, there is on image captured with a conventional system. On the left side, there is the same image after filtering it with a high pass filter. We can notice that edges and shapes has been enhanced. At the same time, all the redundant data that was not necessary to distinguish shapes and edges was removed. Developing bio-inspired systems that performs any kind of processing the bandwidth usage will be optimized.

Figure 1.6 illustrates how frame-based and bio-inspired ones performs when they detect a very fast rotating stimulus and some advantages of bio-inspired systems. We have plotted with points the digital recorded output of one of our temporal contrast retinas when it was stimulated with a high speed rotating dot. Only pixels that detected temporal contrast generated outputs. In biological systems there are not scan periods and pixels are continuously detecting changes in the scene. If pixel bandwidth is enough high, the rotating dot will be detected. As we mentioned previously, biological systems usually process the information. In this particular case, the sensor was able to detect the temporal contrast (temporal filtering) and its sign (each color represents one sign of the spatial contrast). We have also plotted how a frame-based system would perform. It would be generating frames periodically. Such frames would sense the accumulated photo charge of all the pixels of the retina without processing the information. In this particular case, T_{frame} is higher than the stimulus period. This would be a serious limitation and we would not detect the dot movement. Each frame would detect a circle, but not the dot positions. All the frames would be identical.

Another advantage of bio-inspired systems is the local AGC (Automatic Gain Control). The operation range of a typical imager is about 10 decades. Pixel gain has to be adjust to the illumination level to have always the same sensitivity and response in the same way to the relative illumination variations. Conventional systems have a global AGC mechanism. The average chip luminance level is sensed and all the pixel gains are adjusted in the same way. However, this mechanism does not offer good results when there are regions in the pixels matrix with very dif-
Fig 1.5: Example of the importance of spatial filtering to detect shapes and edges and remove redundancy. (a) Original image captured with a frame-based system. (b) Resulting image after spatial filtering.
Fig 1.6: Comparison between a conventional system based on frames and a bio-inspired one tested in our laboratories. The first one (blue points) does not process the information and cannot detect the stimulus because its period is lower than T_{frame}. All the matrix pixels transmit the sensed luminance level. The second one (yellow and cyan points) extracts the temporal contrast (with sign) and can detect the rotating dot. In this case, only regions with contrast transmit information. A temporal filtering operation was done by the sensor.
different levels of illumination. On the contrary, biological systems have a local AGC. Each individual pixel senses the local photo current and its sensitivity is adjusted according this sensed illumination value. Thus, it is possible to capture images where there are very different levels of illumination without loosing sensitivity in any region of the scene. Figure 1.7(a) shows a image taken with a conventional camera with a global AGC. In the image, there were regions with very different levels of illumination. We can notice that it is not possible to distinguish the objects and shapes beyond the window. Figure 1.7(b) shows the same picture after using an algorithm that sets each pixel luminance value taking into account only its neighboring pixels (local AGC) and not all the matrix pixels. In this case, it is possible to distinguish the objects beyond the window.

For the previously mentioned reasons, it makes sense to try to develop devices that emulate the biological systems. Neuromorphic engineering is a discipline that seeks to implement neural structures in silicon. Primate brains are structured in layers of neurons. In each layer, neurons are connected to a large number of neurons ($\sim 10^4$) from the next layer [5]. There are massive connections that allows to implement efficient processing of the information between layers. In early neuromorphic engineering, it soon became clear that one of the major differences between brains and computers was the connectivity between processing units. In order to try to develop multichip systems connected between them massively in a accurate way, efficient mechanisms of interconnection and specific communication protocols are required. Nowadays, VLSI circuit technologies allows to fabricate on a single chip thousands of neurons. However, it is not viable and possible to connect all of them physically. It has also sense to implement layers in different chips leading to multichip systems. In such systems, each single chip (layer) run in parallel and the single components are more simple.

AER interchip communication was originally proposed by Mahowald and Silvilotti [1]-[2]. Biological neurons of a layer communicate with neurons of the next layer by sending information
Chapter 1: Introduction

with spikes. In Fig 1.8, we can see a scheme of an AER communication between two different chips that implement two different layers of neurons. One chip initiates the communication sending a Request Signal (RQST) to the other chip. If the receiver is ready to receive information, it sends an Acknowledge (ACK) signal to the first chip. Then the first chip sends the information with the address of the neuron that has to receive the spike. This way, different neurons in different chips can communicate without being physically connected. Arbitration mechanisms are necessary in the transmitter to avoid collisions between neurons in the fast digital bus.

Multi-chip systems are usually made up with flexible systems that can be built independently to meet specific needs. They also allow to combine the effort of different groups avoiding the chip interconnection problems. AER can be considered a real time communication system because the total activity of a population of sensory or computational units is not close to the bandwidth of the communication channel.

1.3 The Biological Retina

Fig 1.9 shows a cross-section of the human eye and schematic of the different cells that compound the retina. Light enters the eye passing through the cornea. Around the lens there is a colored ring of muscle called the iris. The iris is blocking light forming an adjustable hole in the center where light can enter the eye through the lens. This hole, called the pupil, is adjusted by the iris muscles to maintain a relatively constant level of light entering the eye. The light passing through the pupil is focused by the cornea and the lens. While the cornea has a fixed curvature, the lens can be stretched to adjust the focus to the distance of the object which the eye is looking at. The innermost tissue layer on the back portion of the eyeball is called the retina. All the individual components through which light travels within the eye before reaching the retina are transparent, minimizing attenuation of the light. As we can see in Fig 1.9, the retina contains different kind of cells: rods, cones, and neurons. Its main parts are the fovea, the optical disc and the optical nerve. The fovea is a small specialized region in the center of the retina where the cones are extremely small and packed densely (there are no rods in this region). The optical disc is a point...
on the retina where the axons of the ganglion cells leave the eye to form the optic nerve. There are no photosensitive cells at the optic disc.

The retina is structured in two layers: the outer plexiform layer (OPL) and the inner plexiform layer (IPL). The OPL is the more peripheral layer and the IPL is the more central one.

The retina contain several kinds of cells and photoreceptors. There are two different kinds of photoreceptors, called rods and cones. They operate under different conditions of illumination. Rods operate in dim light and they cannot distinguish colors. Cones are less sensitive and operate under bright light and are sensitive to the wavelength of light due to the presence of three different types of cone pigments, with peak absorbances at 420 nm (violet), 530 nm (green-yellow) and 560 nm (blue-green). In comparison, rods are tuned to 500 nm (blue-green).

Neural responses go from the cones and rods to a series of linking cells, called bipolar, horizontal, amacrine cells, and ganglion cells. Bipolar cells are neurons placed between the OPL and the IPL and have a bipolar structure. Horizontal cells play an inhibitory role. Primates have two horizontal-cell types with no color selectivity. Amacrine cells are also inhibitory. Ganglion cells are the only output channel of the retina. These cells communicate by sending trains of impulses.

All these cells are connected creating a neural network that provide a mechanism for spatial and temporal filtering that allows to emphasize edges and temporal changes in the visual field. This network enhances the relevant information and does not send to the brain redundant or useless information.

We can conclude that biological vision is not just about measuring or sensing the power and the light spectral composition of the visual scene. Biological systems can also process the information and enhance the useful information to send to the brain and avoid redundancy.
1.4 AER Vision Sensors

1.4.1 Adaptive Temporal and Spatial Filtering

The retina has evolved sophisticated filtering and adaptation mechanisms to reduce redundancy and to improve coding efficiency [4]. Some of these mechanisms are local automatic gain control, bandpass spatio-temporal filtering and highpass temporal and spatial filtering. Bandpass spatio-temporal filtering in the first stage of the retina (OPL) attenuates signals that do not occur at a fine spatial or temporal scale, removing redundant transmission of low-frequency signals and eliminating noisy high frequency signals. Highpass temporal and spatial filtering in the second stage of the retina (IPL) attenuates signals that do not occur at a fine spatial scale and temporal scale, eliminating the redundant signals passed by the OPL, which responds strongly to low temporal frequencies that occur at high spatial frequencies (sustained response to static edge) or to low spatial frequencies that occur at high temporal frequencies (blurring of rapidly moving edge).

Boahen developed a simple dynamic model of the retina [4] to study the spatio-temporal behavior. It was a physical model made up resistors, capacitors, and transconductances. It was based on the neurocircuitry of the vertebrate retina and included several major synaptic interactions in the outer plexiform layer (OPL). This model was very useful to understand and study the spatio-temporal filtering in the retina, but it did not have useful applications because it has so many practical difficulties.

1.4.2 Spatial Contrast Extraction

There have been several attempts to implement a contrast sensitive retina. The first functional retina able to detect contrast [44] was proposed by K. Boahen and A. Andreou in 1996. That retina could measure the spatio-temporal contrast. It was based on the model [4] previously proposed by Boahen to study the spatio-temporal filtering in the human retina. The spatio-temporal retina had a resolution of 90 x 92 pixels and a dynamic range of 5 decades. Its main drawbacks were mismatch and bandwidth consumption when there was no contrast. It could not detect the sign of the contrast. The first version was a neuromorphic system with a frame-based output. A further version of the retina [21]-[22] had AER output and was an event-driven system. Nevertheless, it also had some drawbacks like high mismatch and bandwidth consumption when there was no contrast.

After this approach, we have to highlight the work of Barbaro and Ruedi et al. [15]-[16]. They designed two devices. The first one was based on current mode and the second one was an improved version based on voltage mode. It was close to frame-devices because events were transmitted after a global reset. However, there was no information loss because information were immediately available after resetting the device and spikes were sent in order. The device had high dynamic range (120dB) and very low contrast mismatch (2%). It could detect spatial contrast and gradient direction. The main limitations of this retina were the power consumption (300mW) and temporal redundancy. The device was not able to detect the temporal contrast and its temporal resolution was limited by the frame rate. There is also an improved version of this retina [17], it has higher resolution (320 x 240), 132dB of dynamic range, and very low contrast mismatch (0.5%).

The contrast retina presented in this thesis [23] and explained in chapter 3 is an improved version of Boahen’s retina. It solves the main limitations of Boahen’s approach and has some additional features like calibration, thresholding, time-to-first spike mode and bipolar output.
1.4.3 Temporal Contrast Extraction

Motion provides important information. This information is useful for the perception of relative depths, 3D structures, and for grouping objects that we see. The motion pathway is also independent of other visual field pathways and plays a very important role.

The first feasible AER temporal contrast sensor was presented by Mallik et al. in 2005 [7]-[8] and was based on the prior work of V. Gruev et al. [48] describing a pipelined temporal difference imager. Some previous reported retinas were also able to detect temporal contrast, but they had low bandwidth and they were not specific devices for temporal contrast detection. Mallik’s retina modified the traditional active pixel sensor (APS) to detect a quantized absolute change in illumination. It was a frame-based device. Temporal contrast was computed from the absolute difference between frames, so events times were discrete and not continuous. It had the typical advantages of APS sensors: good fill factor (17%), pixels with reduced size and very low fixed pattern noise (0.5%). Its bandwidth was limited by the frame rate and its dynamic range was relatively low (51dB) compared to other AER sensors.

The outstanding sensor proposed by Lichsteiner and Delbrück [10]-[9] was not frame-based and has high dynamic range (120dB), low latency (15\(\mu\)s), good fill factor (8.1%), and low noise (2.1% contrast). That sensor calculates the temporal derivative of the relative illumination. It was an asynchronous sensor with 128 x 128 pixels. Its bandwidth was limited by the arbitration scheme and the gain of the photoreceptor and the differencing.

In chapter 4, we present a new AER temporal sensor based on that work. It has lower latency, higher bandwidth and better fill factor. This sensor is specially useful for high speed applications and surveillance. It uses amplifiers at the photoreceptor stage to improve the sensitivity and the speed response. It also has a more efficient scheme of arbitration that makes it faster. Pixel size has been reduced 50%.

1.4.4 Time-to-First Spike Imagers

Vision Systems are not based on frames, however the data that arrive immediately after the end of a rapid eye movement could be considered as a frame. Sometimes, it is useful to stop the data transmission and then restart it without data loss (bandwidth consumption control). The first time-to-first spike sensors [7]-[12] are based on S. Thorpe [11] ways of processing the visual information like it is processed in the human visual system. After a global reset, the most active pixels (pixels with more relevant information) will spike first. After a certain period of time, we will only receive redundant information and noise. If we stop the data transmission, we will improve the quality of the image and the bandwidth consumption will be reduced.

The new AER contrast extraction retina presented in this thesis has an optional time-to-first spike mode that allows to combine the advantages of the frame-based processing in an AER system: fast response and adjustable frame time. The sensor has a global preset. After presetting the retina, it will stop sending information to the AER bus. Thus, frame time can be set autonomically by adjusting the global preset period.

1.4.5 Luminance Sensors

These sensors [19]-[20] (also called octopus retinas) detect the light intensity and generate a train of spikes with a frequency proportional to the local luminance. Although there is any kind of processing, these sensors have some advantages over frame-based devices, like continuous. detec-
tion. However, spike frequency depends on the light and dynamic range is reduced in comparison to other kinds of AER retinæ. For low illumination levels, the output frequency can be very slow.

1.5 New Developed AER Sensors

The goal of this work was to develop two different vision sensors that can detect spatial and temporal contrast. Both sensors improve the state of the art and are insensitive to illumination conditions and propose new ideas that can be used in further AER sensors.

Mismatch is a problem that has plagued prior AER retinæ. For this reason, we have also proposed a new calibration mechanism, that has been validated experimentally and used in the design of the contrast retina.

The first sensor (described in chapter 4) can detect spatial contrast. It is a 32 x 32 pixels prototype that has some advantages over prior designs. It is insensitive to illumination conditions, it has a new thresholding mechanism, an optional time-to-first spike mode and calibration.

One of the main disadvantages of prior AER contrast retinæ was high mismatch. For this reason, we developed a new compact calibration system (described in chapter 3) for large neuromorphic arrays [13]. This calibration technique has been successfully used to calibrate the mismatch of the contrast retina and offers higher resolutions that other calibrations techniques used in prior designs [14].

The second sensor (described in chapter 5) detects temporal contrast. It is a 128 x 128 pixels retina with high bandwidth and very low latency. It is specially useful for high speed applications and surveillance.

The thesis has five chapters. Chapter 2 presents the Stochastic I-Pot, a compact and powerful circuitry to polarize and test circuits. Chapter 3 describes the new proposed compact calibration system (Newcalib) for neuromorphic arrays. In chapter 4 we present the new spatial contrast AER retina. We explain thoughtfully the pixel design and we show experimental results. In chapter 4, we present the temporal contrast AER retina. Explanations about the pixel design and experimental results are also provided. Finally, in chapter 6, we draw some conclusions and possible future work is proposed.

Table 1.1 summarizes the more important functionalities and performance figures of prior AER sensors. Three types of functionalities are considered: sensing pixel luminance, sensing pixel temporal contrast, and sensing pixel spatial contrast with respect a given neighborghood. For (spike) signal coding, three methods are used: signal to frequency (rate) coding, signal to number of events (NE) coding, and signal to time-to-first spike (TFS) coding. When using rate-coding (as in [21]-[22]-[14]-[23]), a current that carries the information of interest (luminance, contrast) is fed to an integrate-and-fire circuit whose spike frequency is controlled by the current. For NE coding (as in [7]-[9]-[24]), every time the light sensed by a pixel changes by a relative amount, a new spike is generated. In TFS coding (as in [20]-[16]-[23]), the information signal is also fed to an integrate-and-fire circuit, but the integrators are (periodically and) globally reset and only fire one spike between consecutive resets. This way, the information is coded as the time between the global reset and pixel spike time. For a luminance retina [19]-[20], the photo current is the one to be integrated, resulting in timings strongly dependent on ambient light. Consequently, the dynamic range of light sensing capability is directly transformed into the latency variation of the output. This is a severe practical restriction, labelled in Table 1.1 as “Light to Time Restriction”. For contrast computations (either temporal or spatial), light difference is normalized to average light, so that contrast is (by definition) independently of ambient light. Consequently,
these retinae should not suffer for “Light to Time Restriction”. This is the case for all contrast retinas in Table 1.1, except for [19]-[20]-[7]-[16]. [19] and [20] are luminance retinas. In [16], for each frame there are two separate steps in time. The first one uses a Light to Time integration (which lasts between 0.5 μs - 150 ms depending on the ambient light) to obtain a voltage representation of pixel contrast. The second step transforms these voltages into a TFS representation requiring an ambient-light-independence time of about 2 ms. In [7], pixels use a modified active pixel sensor (APS) and pixels can only detect absolute changes in illumination, so there is also a light to time restriction. Actually, the dynamic range is reduced in comparison to the other devices.

Finally, the features and functionalities of our two new sensors are presented. The most significant features of each one have been highlighted.
Table 1.1: Comparison among AER vision sensor devices.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Light to Time Restriction</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>Latency</td>
<td>120μs - 125s</td>
<td>10μs - 1s</td>
<td><5ms</td>
<td>15μs @1klux chip illumination to 2Mfps</td>
<td>3.5μs @1klux</td>
<td>Not Reported</td>
<td>Not Reported</td>
<td>Not Reported</td>
<td>0.1ms - 10ms</td>
<td>3.5μs @ 25klux</td>
</tr>
<tr>
<td>Dynamic Range</td>
<td>120dB</td>
<td>>100dB</td>
<td>51dB</td>
<td>120dB @30fps</td>
<td>50dB</td>
<td>110dB</td>
<td>100dB</td>
<td>>100dB</td>
<td>>100dB</td>
<td></td>
</tr>
<tr>
<td>Spatial Contrast Computation</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Temporal Contrast Computation</td>
<td>N/A</td>
<td>N/A</td>
<td>Temporal frame-difference intensity charge detection</td>
<td>Temporal derivative of the relative luminance</td>
<td>Temporal derivative of the relative luminance</td>
<td>Temporal derivative of the relative luminance</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>Temporal derivative of the relative luminance</td>
</tr>
<tr>
<td>FPN</td>
<td>4%</td>
<td>4.6%</td>
<td>0.5% of full scale, 2.1% TD charge</td>
<td>2.5%</td>
<td>SNRtyp >56dB</td>
<td>1-2dec</td>
<td>1.7%</td>
<td>6.6%</td>
<td>0.6%</td>
<td>2.8%</td>
</tr>
<tr>
<td>Fill Factor</td>
<td>14%</td>
<td>33%</td>
<td>17%</td>
<td>8.1%</td>
<td>10%</td>
<td>14%</td>
<td>20%</td>
<td>3%</td>
<td>2%</td>
<td>8%</td>
</tr>
<tr>
<td>Pixel Size μm</td>
<td>32x30</td>
<td>17x17</td>
<td>25x25</td>
<td>40x40</td>
<td>30x30</td>
<td>34x40</td>
<td>14x14</td>
<td>58x56</td>
<td>80x80</td>
<td>35x35</td>
</tr>
<tr>
<td>Fabrication Process</td>
<td>0.6μm</td>
<td>0.35μm</td>
<td>3M 1P CMOS</td>
<td>0.5μm</td>
<td>3M 2P</td>
<td>0.35μm</td>
<td>2M 2P</td>
<td>180nm</td>
<td>4M 2P</td>
<td>180nm</td>
</tr>
<tr>
<td>Power</td>
<td>3.71mW</td>
<td>N/A</td>
<td>30mW@5V (50fps)</td>
<td>24mW</td>
<td>50-175mW</td>
<td>63mW</td>
<td>300mW</td>
<td>33μW - 10mW</td>
<td>0.66-6.6mW</td>
<td>132-185mW</td>
</tr>
</tbody>
</table>

76
CHAPTER 2

Biasing for Neuromorphic Arrays: The I-Pot System

2.1 Introduction

Analog circuits require, in general, a set of bias currents which are usually provided by a current reference circuit allocated somewhere at the periphery of the chip together with some current scaling and distribution circuitry [29], [30]. Many times, circuit designers would like to be able to fine tune some of the designed bias currents in order to compensate for process variations and components mismatches. In other occasions, when experimenting with new circuits, it is desirable to have large degrees of freedom to play with all available bias currents and test the circuits for wide ranges of operating conditions. Under these situations, the safest solution is to provide one external pin for each bias current, making accessible a transistor gate. This allows to connect all available gates to external potentiometers (or a pot-box) so that one can experiment freely in the lab with all combinations of biases. In practice, this approach is limited to a reduced number of freely adjustable biases, since the number of pins of a chip cannot grow arbitrarily. To overcome this problem, Hasler et al. introduced the E-Pot circuit block [31], which exploited floating gate and tunneling/injection circuit techniques to program non-erasable analog voltages onto gates of biasing transistors. However, floating gate and tunneling/injection techniques are still presently little reliable and complicated to use successfully in standard CMOS processes.

In order to generate programmable bias currents we introduce an alternative approach, based on the use of what we call the ‘Stochastic I-Pot’ concept [35]. The ‘Stochastic I-Pot’ is a digitally programmable current source which, from a reference current, can provide any desired current with high precision and down to pico-amperes. Each I-Pot cell includes a digital register to select a current range, a current value for this range, and a sign. I-Pot cells can be chained so that any arbitrary number of current biases can be generated and independently programmed. The number of external pins that a chip needs for characterizing and programming the chain of I-Pots is three, independent of the number of I-Pots assembled. Consequently, designers can include any arbitrary number of programmable current biases, with the only restriction of area consumption. In our par-

1. This chapter of the thesis is based on a previous reported paper ([35]).
ticular implementation, in a 0.35\(\mu m \) process, the I-Pot cell area is 130\(\mu m \times 68\mu m \), one third the area the pad it replaces.

We used the \textit{Stochastic I-Pot} to generate all the bias currents that we needed to provide to the contrast retinae.

2.2 I-pots Circuit Architecture

The ‘\textit{Stochastic I-Pot}’ exploits the use of current mode ladder structures applied to MOS transistors [32]-[28]. A generic MOS ladder structure, configured as current source, is shown in Figure 2.1. All transistors are proportional to a unit size ratio \(W/L \) by either a factor 1, \(N \)-1, or \(N/ (N-1) \). This way, branch currents \(I_i \) have an attenuation ratio of \(N \) from each branch to the next one. In the ‘\textit{Stochastic I-Pot}’ circuit, we use two of these ladder structures (as we can see in the circuit diagram of complete I-Pot cell in Figure 2.2).

The first ladder structure (Range Selector Ladder), with attenuation ratio around \(N=10 \), selects an operating current range. This range ladder has 6 output branches, so that the output current can be selected between the input reference current \(I_{REF} \) and around \(I_{REF}/10^6 \).

For the second ladder structure (Stochastic Ladder), we use an attenuation ratio of \(N = 2 \). This allows for selecting any binary combination of current branches, in the same way a current DAC would do. However, we do not want to have a high precision (like 8 bit) current DAC within each I-Pot, because they would require extremely large transistor sizes and would most probably not provide such precision for very small currents down to pico-amperes.

In our approach we use ladder structures with attenuation ratio \(N = 2 \), with a large number of branches, but with small transistor sizes so that we intentionally provide large mismatches between the current branches. By having a large number of branches, each with large mismatch, we achieve a good coverage of possible output current combinations. Consider a ladder with input current 300\(pA \), attenuation ratio \(N = 2 \), and 8 branches. The unit transistor size is \(W/L = 1/0.7\mu m \). For a transistor of this size, fabricated in the AMS 0.35\(\mu m \) CMOS process, and driving a current of \(\sim 700pA \), results in a current mismatch standard deviation of around \(\sigma \approx 35\% \), as can be seen by interpolating the measurements shown in Figure 2.3, [28], [33]. Figure 2.4(a) shows the output current obtained as function of the 8-bit digital word \(w_{val} \) that con-

Fig 2.1: Generic ladder structure with \(N \) branches. The value of the current in each branch is indicated.
controls the combination of branches as is shown in Figure 2.2. As can be seen, this characteristic differs dramatically from a conventional stair-case that a high-precision 8-bit DAC would provide. However, suppose we introduce a look-up table between the digital word we provide and the one physically applied to the ladder structure, so that the output currents become ordered. The result is shown in Figure 2.4(b) for the same ladder and bias reference current. Now we see a monotonic increasing dependence between the digital control word \(w \) and the output current. It does not matter that this relationship is not perfectly linear. Our objective is simply to provide a bias current as close as possible to a desired value. Such objective is limited by the intervals between consecutive current values in Figure 2.4(b). To characterize these intervals, we show in Figure 2.4(c) the relative difference between the consecutive values in Figure 2.4(b),

\[
\Delta_{rel} = 2 \left| \frac{I_n - I_{n+1}}{I_n + I_{n+1}} \right|
\]

(2.1)

As can be seen, we have errors below 10% for the whole range except the first 1/20 of the range, and below 1% for last 1/4 of the range. But this was a ‘lucky’ particular case. It is perfectly possible to find situations where the mismatch plays against us and we obtain an unfortunate extremely large maximum gap. This is for example, the case illustrated in Figure 2.4(d-f), for another I-Pot, exactly equal to the one used for Figure 2.4(a-c). Such situations occur for example, when the maximum branch current \(I_1 \) in Figure 2.1 results much larger than the sum of all the others. This produces an extremely large gap in the center of the characteristic. In Figure 2.4(e) the largest gap was of 92.3\(\mu A \) for a total range of 591.3\(\mu A \). Consequently, as can be seen in
Figure 2.3: Current mismatch standard deviation measurements, for NMOS transistors in a 0.35\(\mu\)m CMOS process. Vertical axes represent standard deviation in \%, and horizontal axes operating current. Measurements are taken for 30 different transistor sizes, by sweeping width \{10, 5, 2.5, 1.2, 0.6\}\(\mu\)m and length \{10, 4, 1.5, 0.7, 0.3\}\(\mu\)m.

Figure 2.4(f), current values in the range between 250 to 350\(pA\) cannot be generated with a precision better than 30\%.

One can think of several solutions to solve this problem. After playing with a few of them and testing them with statistical simulations, we found out that the most reliable solution is to duplicate the output branches of the ladder with attenuation ratio \(N = 2\). This not only guarantees there will be no large gaps between consecutive current values, but at the same time reduces dramatically the value of the largest gap found, for the same transistor sizes and input reference current.

Figure 2.4(g-i) shows the same situation for the circuit in Figure 2.4(a-c), but where now the output branches are duplicated. Now there are 16 bits to select output branches combinations but the maximum current gap in Figure 2.4(h) is now reduced to 0.20\(pA\), excluding the first and last 100\(pA\) intervals of the range. The relative error is shown in Figure 2.4(i). As can be seen it is less than 0.001 for currents between 137\(pA\) and 1214\(pA\). Figure 2.5 shows the complete circuit schematics of a ladder with attenuation ratio \(N = 2\) and duplicated output branches.

Looking at the complete circuit diagram of a stochastic I-Pot cell in Figure 2.2. Each stochastic I-Pot receives a copy \(I_{REF,\text{copy}}\) of a common reference current \(I_{REF}\), which is the input to a PMOS \(N = 10\) range ladder structure with 6 output branches. The common reference current can be generated by any bandgap type circuit [34] with temperature compensation, or provided off-chip through an extra pin. The digital word \(w_{\text{range}}\) selects just one of the range ladder outputs (not a combination of them). This current \(I_{\text{range}}\) sets the coarse mode range of the I-Pot.
output current. Current I_{range} is now fed to the input of an NMOS $N = 2$ ladder structure with duplicated output branches. Let us call this ladder a “stochastic ladder”. In our particular case we implement $16 \ (2 \times 8)$ duplicated branches. The particular combination of output current branches is controlled by the digital word in register w_{val}. The output of this ladder I_o can be optionally sign inverted by transmission gates $s_{w1} - s_{w3}$, controlled by the state of an extra register w_{sign} which inserts or not a PMOS current mirror in the output current path. Finally, the signed output current I_o is directed to either its destination bias point, or to a chip output pin I_{test} for characterization purposes, depending on the state of register w_{test}. All registers, $w_{\text{range}}, w_{\text{val}}, w_{\text{sign}}$ and w_{test} are shift registers, connected in series, and clocked by the same clock signal. I-Pot cells can be chained directly in series by chaining their shift registers sharing all the same clock signal. All I-Pot cells share also the same gate line V_G and test line I_{test}.

Fig 2.4: (a-c) Illustration of mismatch effects in a MOS ladder with ratio $N=2$. (d-f) Same, but for an ‘unlucky’ ladder example. (g-i) Illustration of a ladder structure with duplicated output branches (a,d,g) I-Pot output currents versus digital word w_{val} (b,e,h) same output currents after ordering versus w_{ord} (c,f,i) relative difference between consecutive values.
The main drawback of the present I-Pot approach is that each I-Pot of each fabricated chip needs to be characterized individually. The good news are that this is quite easy to do by using a host computer that loads the chained shift registers, while at the same time we require the use of just one single external current metering instrument.

The procedure for characterizing the I-Pots of a chip is as follows:
1.- Each I-Pot has to be characterized individually. Consequently, the \(w_{\text{test}} \) bit of only one single I-Pot has to be set to ‘active’. All others must be disabled. This way, only one single I-Pot output is connected to external line \(I_{\text{test}} \).
2.- Sweep the two signs for the active I-Pot.
3.- For the selected I-Pot and sign, sweep all current ranges through digital word \(w_{\text{range}} \).
4.- For the selected \(w_{\text{range}} \), sweep all 20 output current branches, measure the selected branch with the external current meter through pin \(I_{\text{test}} \), and store it in a file in the computer.

After completing the measurements for one I-Pot, we will have stored in the computer a total of \(2 \times 6 \times 16 = 192 \) current values. For each sign and range, we can now produce all \(2^{16} \) possible combinations, order them, and find the maximum gap. What now remains to do, is writing a little program that given a desired I-Pot value will return the optimum \(w_{\text{val}} \) and \(w_{\text{range}} \) that gives the minimum error.

2.3 Experimental Results

Here, we present some experimental results after characterizing the I-Pots. I-Pots were fabricated in the AMS 0.35\(\mu m \) CMOS process. The stochastic ladder uses 16 duplicated output branches.
Chapter 2: The I-Pot System

branches, and the unit transistor of the ladder structure has a size of $W = 1 \mu m$, $L = 0.7 \mu m$. This ladder was intentionally made with a small unit transistor to increase mismatch, and therefore improve its stochasticity. The range ladder used 6 output branches, and the input current to the range ladder was set to $100 \mu A$. The range ladder was designed according to Figure 2.1 with an attenuation ratio of $N = 11$, approximately.

After measuring one of the fabricated I-Pots we obtain the currents shown in Figure 2.1. Each of the six subgraphs corresponds to one of the available ranges provided by the range ladder. In each subgraph we have added the ordered version of the measured current values. This ordered version is drawn with the continuous line. The minimum and maximum current values provided by each range are as follows. First range $[0.4 mA, 176 mA]$, second range $[30 nA, 12.7 mA]$, third range $[1.9 nA, 673 nA]$, fourth range $[126 pA, 44.0 nA]$, fifth range $[9.9 pA, 3.28 nA]$, and sixth range $[1.2 pA, 331 pA]$.

Figure 2.7 shows these values, expressed in bits as function of currents. Striation effects can be observed, specially as current decreases, due to quantization effects in the data acquisition instrument.

We can see that the maximum resolution is obtained for the central parts of the ranges, reaching values as high as 13-bits. On the other hand, for the external parts of the ranges the resolution decreases dramatically down to values as low as 1-bit. This is because in the central part of the ranges there is a higher density of redundant values than on the extremes of the ranges. However, if the ranges overlap, we can increase the density of redundant values and improve the resolution. The procedure is as follows. Let us take all the measured values of all six ranges and order

$$2 \cdot 2^{n_{\text{bits}}} = \Delta_{rel} \Leftrightarrow n_{\text{bits}} = -\log_2(\Delta_{rel}) = -\left(\ln \Delta_{rel}\right)/(\ln 2)$$

Fig 2.6: Measured currents of one of the fabricated I-Pots for all six current ranges. Continuous lines show the same values after ordering. Vertical axes are measured currents, horizontal axes are index numbers for the $2^{16} = 65536$ measurements of each range.
them as one unique set of current values. Each current value is uniquely defined by its range and its 16 bit word within that range. Let us now compute the difference of consecutive values, as defined by eq. (2.1) on page 63, and express them in bits. The result is shown in Figure 2.8. We can still see very well the regions of the six ranges with their respective maximum resolution central parts of up to 13-bits. However, the resolution of the extreme regions of the ranges has improved to values of above 8-bits. Neglecting the two extreme regions of the whole merged six ranges, the worst resolution is obtained for currents around 0.7 mA, yielding a resolution of 8.05 bits. The first current value showing a resolution above 8 bits is 19.6 µA, and the largest one 176 mA.

2.3.1 Temperature Effects

Ideally speaking, since the I-Pot operation is based on current splitting techniques, the effect of temperature should be minor as long as the current division ratios between ladder branches remain unaltered. Unfortunately, this is not completely true, and those ratios do depend slightly on temperature. We have observed that those ratios can vary between 0.1% and around 1% for temperature variations between 0º-40ºC for currents above tens of nano-amps. For lower currents the effect of temperature is more drastic, since leakage currents increase rapidly with temperature. Figure 2.9 shows the error (expressed in bits) between the I-Pot current expected when characterized at 20ºC, and the one obtained when doing new measurements, sweeping temperature between 0ºC and 40ºC. Each data point is obtained by taking the maximum error within 1/30-th of the 7-decade current range.

Fig 2.7: Computed relative increments between ordered consecutive values expressed in bits. Vertical axes are resulting bits, while horizontal axes are measured currents.
In this chapter, we have presented the \textit{Stochastic I-Pot}. It is a versatile and powerful circuit for generating digitally controlled precise bias currents has been presented. 8-bit precision has been verified from currents as low as 19.6\(pA\) up to values of 176\(mA\) (almost 7 decades). Temperature degrades precision gracefully, and is more severe for smaller currents. This circuit is specially handy for experimenting with current-mode circuits operating in weak inversion, where mismatch is high and operating range extends over several decades. It is also very useful for experimenting with new circuits, where it might be desirable to include a large number of (fine-)tunable current biases for trimming gains and offsets. The only drawback is that each I-pot needs to be characterized individually using an external off-chip current metering instrument.

I-pots were successfully used to test the two retinae presented in the thesis. In both cases, we set \(I_{ref} = 17\mu A\) to achieve more precision with lower currents values.

Fig 2.8: Computed relative increments, expressed in bits, when considering a measured values if all six ranges as a unique set. Vertical axis represents resulting bits, while horizontal axis represents absolute measured current.
Fig 2.9: Effect of temperature on precision.
CHAPTER 3

The New Calibration System

3.1 Introduction

Over the last 20 years, a vast amount of neuromorphic VLSI systems have been reported ([6]-[22], just to mention a few) which usually consist of large arrays of special processing pixels. Since pixels have to be of reduced size and power consumption, analog design techniques are used with transistors of small size operating with nano amps or less. This yields necessarily high mismatch. Although reported neuromorphic VLSI systems have revealed interesting, powerful, and fast information sensing and processing capabilities, they still have not evolved clearly to specific marketable products. One of the main reasons for this is the unavoidable excessive mismatch that plagues most of the so far reported neuromorphic chips [6]-[22].

To keep mismatch low without increasing transistor sizes nor operating currents, the only known solution is calibration. Some researchers have reported calibration techniques based on floating-gate MOS transistors [25]-[26] in standard CMOS processes. However, these techniques require a special know-how, which makes difficult the path towards marketable products. Recently, some neuromorphic systems with in-pixel RAM based calibration techniques have been reported [14]-[27], which exploit the use of compact current DACs made with calibrable MOS ladder structures [28]. The drawback of this approach is that it uses a one-point calibration principle, which limits the final precision to 3-bit for practical transistor currents and sizes. In this thesis, we present another way of implementing a digitally adjustable MOS, [13], much more compact than a MOS ladder structure, which makes viable a multi-point calibration. Also, we introduce some extra translinear circuitry which enables to sweep operating currents of the calibrated current sources without requiring recalibration. This way, circuit precision degrades smoothly when changing operating currents.

By using a calibration system, the performance of a system can be improved. However, adding some calibration circuitry has some drawbacks. Obviously, the circuit has to been calibrated at least once. This implies time and it is specially important when electronics circuits are fabricated massively. Calibration time has to be reduced as much as possible. Another issue is area. Calibra-

1. This chapter of the thesis is based on the previous reported paper, ([13]).
tion circuitry inside pixels has to be simple and reduced. If not, we will degrade the fill factor and we will increase the total area of the circuit considerably.

Another point to consider is how to estimate the maximum admissible mismatch. This is not trivial, because the values of some currents (i.e. diode photo current chapters) are not always known and can vary significantly. Once the mismatch is known, the calibration system can be designed and we have to decide if it makes sense to add it to the pixel. Sometimes, it could be better to increase the transistors area or to use higher bias currents to decrease mismatch effects.

When we design a calibration system for a large neuromorphic array, the number of transistors has to be as low as possible. We cannot try to oversize the system. It is also desirable to implement calibration systems whose effects do not degrade too fast when bias currents are scaled or there is a change in illumination. We would like to calibrate the system in certain average conditions and then preserve the calibration when bias are scaled or there are different settings in the visual scene. It would be also desirable to do the calibration on chip without external circuitry just one time.

One of the targets of the thesis was to design a contrast sensitive retina based on the previous work of Boahen. After studying and simulating the circuit, we checked that one of the main drawbacks was mismatch. For this reason, we tried to develop new calibration techniques that could be used in generic neuromorphic VLSI systems. Not only does calibration improve mismatch, it also makes possible to work with lower bias currents and reduced consumption or to have a bipolar output (as we will discuss in chapter 4) in large arrays of pixels.

In this chapter, we will explain the new calibration system and its more important features. We will present some experimental results. Its specific use in the contrast retina will be discussed in the next chapter.

3.2 MOS Transistor with Digitally Adjustable Length

Previously reported in-pixel RAM based calibration circuits [14]-[27] were based on the use of MOS ladder structures [28]. Figure 3.1 shows the circuit of an equivalent \(N \)-bit digitally adjustable MOS transistor. This circuit is composed of \(3N + 1 \) unit transistors of size \(W/L \) and \(N \) switches. Because of the current splitting principle in MOS ladder structures [32] each vertical branch drives a current half of the previous one, except for the last one. The circuit in Figure 3.1(a) between terminals \(D, G \) and \(S \) behaves (at DC) identically to a MOS transistor, as in Figure
3.1(b), of length \(L \) and whose equivalent width is digitally adjustable through the \(N \)-bit digital word \(w_{cal} = \{b_{N-1}b_{N-2}...b_2b_1b_0\} \). The equivalent width is given by

\[
W_{eq} = (W/2) \times g(w_{cal}),
\]

where

\[
g(w_{cal}) = \sum_{i = 0}^{N-1} \frac{b_i}{2^{N-1-i}}
\]

(3.1)

Digital word \(w_{cal} \) is stored on in-pixel static RAM cells at startup. The optimum calibration words are obtained from a calibration procedure followed the first time the chip is used [14]-[27]. From eq. (3.1) we can see that the equivalent width can be adjusted between 0 and \(2 - (1/2^{N-1}) \) in steps of \(1/2^{N-1} \).

To develop calibration circuitry for large neuromorphic arrays, we developed a new approach to digitally adjust the size of a MOS transistor using a more compact circuitry [13]. Figure 3.2(a) shows the schematics of the proposed circuit. There are \(N \) transistor segments between terminals \(D \) and \(S \). Each segment is either enabled by connecting its gate to terminal \(G \), or disabled by connecting its gate to \(V_{DD} \). Transistor sizes can be for example \(S_{N-1} = W/L \), \(S_{N-2} = 2W/L \), ... and \(S_0 = (2^{N-1})W/L \). This can be implemented physically by using unit transistors of size \(W/L \) (one for \(S_{N-1} \), two in parallel for \(S_{N-2} \), ... \(2^{N-1} \) in parallel for \(S_0 \)). This way, each segment would be equivalent to a transistor of size \(S_i = W/(L/2^{N-i-1}) \). Consequently, the digitally adjustable transistor in Figure 3.2(a) would be equivalent to one of width \(W \) and digitally adjustable length \(L_{eq} = L \times g(w_{cal}) = L \times \sum_{i = 0}^{N-1} \frac{b_i}{2^{N-1-i}} \). This transistor can be used as part of a current mirror\(^1\), as shown in Figure 3.2(b), to provide a calibration current.
Chapter 3: The New Calibration System

Figure 3.3 shows the simulated stairs of as function of \(w_{\text{cal}} \) (using a 4-bit digitally-controlled-length MOS) with \(w_{\text{cal}} \), using unit MOS sizes of \(1/4 \mu m \), and models for a 0.35 \(\mu m \) standard CMOS process. Figure 3.4(a) shows \(I_{\text{cal}} \) as function of \(I_{\text{REF}} \) before calibration, with \(w_{\text{cal}} = 15 \) for each of the 100 simulated Montecarlo iterations. The mismatch at \(I_{\text{REF}} = 3\,nA \) is \(\Delta I_{\text{cal}}/I_{\text{REF}} = 110\% \) and at \(I_{\text{REF}} = 1\,pA \) is 130\%. Using the results in Figure 3.3 (for \(I_{\text{REF}} = 3\,nA \)), one can compute for each Montecarlo iteration the optimum value of \(w_{\text{cal}} \) for minimum spread at \(I_{\text{cal}} \). Once setting this optimum set of values for \(w_{\text{cal}} \), the resulting \(I_{\text{cal}} \) as function of \(I_{\text{REF}} \) is shown in Figure 3.4(b). Now the mismatch at \(I_{\text{REF}} = 3\,nA \) has been reduced to 4\% (4.6 bits).

1. Here we use a sub-pico-ampere current mirror topology [36], since we want to use eventually \(I_{\text{REF}} \) values down to the pico ampere range [27].
From a practical point of view, it is not efficient to follow the previous unit transistor based sizing strategy. Note that transistor of size S_{N-1} is the most critical for mismatch (since this segment contributes the largest L). However, it uses only one unit transistor, while transistor of size S_0 is the least critical for mismatch and uses 2^{N-1} units. In practice it is more efficient to use one single transistor for each MOS segment and adjust its size to have a similar effect. Furthermore, from a statistical point of view, since mismatch plays an important role, the steps of the final stair cases will not be all equal. The maximum step heights will limit the final calibration capability. Therefore, it is important to minimize this maximum possible step height. To do this, the nominal stair case should be designed with some intentional ‘down-steps’, so that when mismatch introduces random variations the extra redundancy compensates for eventual large up-steps. Figure 3.5, for example, shows Montecarlo simulation results of a 5-bit structure that uses one single transistor per segment and has intentional down-steps. Simulated transistor sizes were $\{2/3, 2/1.8, 2/1.8, 2/1, 2/0.7\}$.

3.3 Translinear Circuits for Tuning

The calibration technique shown in Figure 3.2 requires to recalibrate all circuits when there is a global change in the operating current I_{REF}. In practice, it is desirable to allow a change in the operating current I_{REF} without requiring recalibration. Note that, all transistors introduce mismatching and calibration compensates for the combination of all mismatches of all transistors. The mismatch introduced by each transistor is dependent on its operation current and bias conditions. To have calibration less sensitive to bias conditions one should use topologies that change

![Fig 3.4: Montecarlo simulation results for the circuit in Figure 3.2(b) when sweeping I_{ref}. (a) Before calibration with $w_{cal}=15$ for all Montecarlo iterations. (b) After calibration with optimum w_{cal} for each iteration.](image-url)
bias conditions for as few transistors as possible. To achieve this we introduce tunable translinear circuits, which will allow us to keep fixed bias currents for some transistors, including the digitally-controlled-length ones. This is shown in Figure 3.6. The circuitry comprised by broken lines is replicated once per pixel, but the rest is implemented only once at the periphery. Transistors M_1 to M_4 form a translinear loop, thus $I_{oi} = I_1I_2/I_3$. Local current I_{i3} is mirrored from the peripheral global current I_3, through a current mirror with a local digitally-controlled-length MOS. To achieve a factor 2 calibration range, we include two transistors in series for this current mirror output. One of fixed size $W/2L$ and the other calibrable. Consequently, $I_{i3} = I_3/(2 + g(w_{cal}))$ and

$$I_{oi} = \frac{I_1I_2}{I_3}(2 + g(w_{cal}))$$

with $g(w_{cal}) = \sum_{i=0}^{N-1} \frac{b_i}{2^{N-1-i}}$.

Fig 3.5: Example simulation of a 5-bit digitally controlled length MOS with one transistor per segment and intentional down-steps. (a) Nominal mismatch-less simulation. (b) Monte Carlo simulation with 100 iterations.
With this circuit, one can maintain (after calibration) constant currents I_3 (and I_{i3}) and I_1, while tuning I_2 globally to scale up or down all local currents I_{oi}.

3.4 How to Optimize the Calibration Ranges.

For calibration, the goal is to find the optimal horizontal line that cuts through all stairs and produces the minimum dispersion among all stairs. Note in Figure 3.5(b) points ‘A’ (top value of left side) and ‘B’ (bottom of right side). If ‘B’ is below ‘A’ the maximum dispersion after calibration will be high, because there will be no horizontal line cutting all stairs. If ‘A’ is below ‘B’ it is possible to find for each stair a value close enough to the desired horizontal line cutting all stairs. For optimum calibration it is desired that ‘A’ be close to ‘B’, so that final calibration words may spread over the whole range. The resulting relative position of points ‘A’ and ‘B’ depends on the resulting mismatch distribution of the array and the resulting process corner of the sample. One can design the nominal case to have ‘A’ as close as possible to ‘B’, but then many fabricated samples will result with ‘A’ higher than ‘B’ yielding poor calibration capability. On the other hand, if one designs the nominal case for ‘A’ conservatively lower than ‘B’, then many samples will not take advantage of all their bits for calibration, resulting in reduced calibration capability. Consequently, in practice, it will be desirable to be capable to adjust the relative positions of points ‘A’ and ‘B’ electronically. For this, we have implemented two different global optimization strategies. In the first strategy, shown in Figure 3.7, two digitally-controlled-length transistors are used. One of them is adjusted locally, as in Figure 3.6, but the other is adjusted globally. Thus all gates of its transistor segments (see Figure 3.2(a)) are shared by all pixels and controlled from the periphery. As a result,

$$I_{oi} = \frac{I_1I_2}{I_3}(g(w_{adj}) + g(w_{cal}))$$ \hspace{1cm} (3.3)

Figure 3.8 shows the resulting simulated staircases for 3 different values of global control word w_{adj}. For one extreme ($w_{adj} = 31$, as in Figure 3.8(a)) ‘A’ is above ‘B’, and the array has very
poor calibration capability. For the other extreme (\(w_{adj} = 0 \), as in Figure 3.8(c)), ‘A’ is at the bottom and the horizontal lines cut only a reduced range of the stairs, thus reducing significantly the available number of bits for calibration. The optimum solution is an intermediate one, in this case \(w_{adj} = 20 \) as in Figure 3.8(b), which sets points ‘A’ and ‘B’ to be close. The optimum value of \(w_{adj} \) is sample dependent.

The second global optimization strategy is shown in Figure 3.9. Here the translinear circuit has been replicated twice, so that there are two of such translinear circuits in parallel. One of them uses local calibration through local digital control word \(w_{cal,i} \). The other is adjusted globally and only the output transistor \(M_x \) of its translinear set is replicated once per pixel. This allows for a larger size of this transistor, and consequently less mismatch. The purpose of the locally cali-
Chapter 3: The New Calibration System

Fig 3.9: Second strategy for optimizing calibration range.

Fig 3.10: Simulation results for second strategy. (a) For all bias currents equal to 10\(\text{nA}\), (b) detail of the bottom calibrate subcircuit \(I_{id}\), and (c) results for turning bias currents \(I_i\) down to 4.5\(\text{nA}\).

brated translinear circuit is to compensate for the mismatch at \(M_x\). Figure 3.10 shows simulation results for this circuit. In Figure 3.10(a) all peripheral bias currents \(I_k\) and \(I'_k\) were set to 10\(\text{nA}\).
The result is ‘A’ lower than ‘B’ and a reduced range for the calibration words. Figure 3.10(b) shows the contribution of only the bottom locally adjustable subcircuit \(I_{cal} \) in Figure 3.9. Note that for \(w_{cal} = 0 \) the bottom circuit does not add current to \(I_{oi} \). Consequently, in Figure 3.10(a), for \(w_{cal} = 0 \) the mismatch is produced only by the upper \(M_{k} \) transistors. Note that this left part of the stairs will be fixed if peripheral currents \(I_{k} \) are maintained fixed. The tuning strategy consists now in scaling peripheral currents \(I_{k} \) until obtaining the optimum situation shown in Figure 3.10(c). In this case, we have set all \(I_{k} = 4.5nA \). After finding the optimum calibration words, the resulting operating point can be scaled by adjusting simultaneously only peripheral currents \(I_{2} \) and \(I_{2}' \).

3.5 Experimental Results

In order to characterize the new calibration system, a test prototype microchip was fabricated in a standard 0.35\(\mu m \) CMOS process. Twenty 5-bit current DACs were fabricated. Ten of them used the first calibration range optimization strategy (Figure 3.7), and the other ten used the second one (Figure 3.9).

Each of the first ten DACs uses five replicas of the circuit in Figure 3.7, one for each bit. The nominal output currents of each \((I_{oi}) \) were adjusted to be binarily scaled. Consequently, at the periphery, we need five groups of current sources \{1, 2, 3\} and five groups of transistors \{4, 5, 6\}, one for each bit. However, these five groups of peripheral current sources and transistors are shared by all ten DACs.

Each of the second ten DACs uses five replicas of the circuit in Figure 3.9. Again, for each of the ten DACs, the circuitry is replicated five times (one per bit), and the peripheral circuitry (outside broken lines in Figure 3.9) is shared, per bit, by all ten DACs.

The area of the circuit layout inside broken lines is \(8 \times 14\mu m^2 \) for Figure 3.7 and \(7 \times 14\mu m^2 \) for Figure 3.9.

Figure 3.11(a) shows the experimentally measured output currents for ten replicas of the circuit in Figure 3.7, when setting \(w_{adj} = 0 \). Peripheral bias currents were made equal to \(I_{1} = I_{2} = I_{3} = 10nA \), and all calibration words \(w_{cal} = 0 \) were swept simultaneously from 0 to 31. After repeating this measurement for all possible \(w_{adj} \) values, the optimum value for \(w_{adj} \) corresponds to the situation where the top left value is closest to the bottom right one. This case is shown in Figure 3.11(b). At this point we can obtain the ten optimum calibration words \(w_{cal} \) that render the minimum variation. The maximum output current spread obtained under these circumstances is \(|\Delta I_{oi}|_{max} = 0.57nA \), which corresponds to 5.7%, at a nominal current of \(I_{b} = 10nA \). If this were the current source controlled by the most significant bit of a current DAC (with 20\(nA \) maximum range), it would limit the DAC precision to \(-\ln(|\Delta I_{oi}|_{max}/2I_{b})/\ln2 = 5.13\text{bits} \). To verify how calibration degrades when changing bias conditions, we swept \(I_{2} \) in Figure 3.7 between 100\(pA \) and 1\(\mu A \). The maximum current spread among all 10 calibrated current sources is shown in the trace with circles in Figure 3.12. The trace with triangles are measurements obtained before calibration (\(w_{cal} = 0 \), for all \(i \)). We can see the 10 samples maintain a precision of 4 bits for currents above 3\(nA \). Horizontal axis is average of
Chapter 3: The New Calibration System

We also show in Figure 3.12 the resulting precision after calibration obtained through simulations, shown with crosses. Note that it is over optimistic, except for the point at which calibration was done (10\(nA\)). The reason is that in this particular circuit (Figure 3.7) calibration degrades because of mismatch in MOS transistor slope factor. Mismatch in this parameter is not modelled in our simulator.

In a similar way, Figure 3.13 shows the measured precision before and after calibration of ten calibrable and tunable current sources that follow the approach depicted in Figure 3.9. Note that now the mismatch before calibration is less than in Figure 3.12. This is because now the area used by digitally-controlled-length transistor \(M_b\) in Figure 3.7, is available for transistor \(M_x\) in Figure 3.9, which can be made larger. With the structure of Figure 3.9 we obtain a much better precision at the calibration point (8.30 bits at 10\(nA\)), but degrades rapidly, specially for high currents. The precision after calibration obtained by simulation, is slightly pessimistic at the calibration point (7.63 bits at 10\(nA\)), but it degrades optimistically as operating current departs from the calibration point.

Figure 3.12 and Figure 3.13 show the matching precision among 10 current sources calibrated at 10\(nA\). Now we use 5 of these sources, calibrated at \{10, 5, 2.5, 1.25, 0.625\}\(nA\), to build a 5-bit current DAC. The matching precision obtained among the 10 fabricated DACs is shown in Figure 3.14 (for the tuning scheme of Figure 3.7) and in Figure 3.15 (for the tuning scheme of Figure 3.9). The DACs were calibrated at 16ºC, and the figures also illustrate the DACs behavior when temperature is changed between 0ºC and 40ºC. We can see that the effect of temperature is not severe for the lower current range, while for higher currents the DACs are almost insensitive to temperature variations.

3.6 Discussion

In this chapter, we have described a new method to calibrate large neuromorphic arrays. The approach is illustrated for current sources operating in the nano ampere range. Two tuning schemes are proposed for sweeping the operating range over four decades. The first one achieves
less precision at the calibration point but degrades more gracefully as operating current is increased. The second one achieves higher precision at the calibration point but precision degrades more as current increases. Test prototypes were fabricated and extensively tested and characterized. As an example application, current DACs of 5-bit resolution and 20nA range have been fabricated and characterized.

As it will be explained in the next chapter, the calibration procedure was used to reduce mismatch in the spatial contrast retina. In this case, the scheme of Figure 3.9 was chosen because we were interested in getting the highest precision at a fixed calibrated point without large variations of bias currents.

![Graph](image)

Fig 3.12: Measured precision of calibrate and tunable current source with the approach of Figure 3.7. Trace with circles: measured precision after calibration (with optimum w_{cal_i} for each of the ten current sources). Current sources were calibrated at 10nA. Trace with triangles: measured precision before calibration ($w_{cal_i} = 0$ for all current sources). Trace with crosses: precision after calibration, obtained through simulations.
Fig 3.13: Measured precision of calibrable and tunable current source with the approach of Figure 3.9. Trace with circles: measured precision after calibration. Current sources were calibrated at 10\(nA\). Trace with triangles: measured precision before calibration (\(w_{cal} = 0\) for all current sources). Trace with crosses: precision after calibration, obtained through simulations.
Fig 3.14: Measured Precision for the 5-bit DAC samples that use the first tuning strategy of Figure 3.7. DACs were calibrated with MSB at 10 nA and at 16°C. After calibration, precision is characterized sweeping operating current for different temperatures.
Fig 3.15: Measured precision for the ten 5-bit DAC samples that use the second tuning strategy of Figure 3.9. DACs were calibrated with MSB at 10nA and 16°C. After calibration, precision is characterized sweeping operating current for different temperatures.
CHAPTER 4

The AER Spatial Contrast Sensor

4.1 Introduction

Visual sensors (retinae) are among the first AER modules to be reported since the introduction of the technology [1]-[2]. Spatial contrast AER retinae are of special interest since they provided highly compressed data flow without reducing the relevant information required for performing recognition. As we explained in chapter 1, a variety of AER visual sensors can be found in the literature, such as simple luminance to frequency transformation sensors [19], Time-to-First-Spike (TFS) coding sensors [20]-[16], foveated sensors [37]-[38], more elaborate transient detectors [9]-[24]-[39], motion sensing and computation systems [40]-[41], and spatial and temporal filtering sensors that adapt to illumination and spatio-temporal contrast [21]-[22].

Spike based visual sensors can code their output signals using rate coding or TFS coding. When using rate coding, each pixel is autonomous and continuously generates spikes at a frequency proportional to the signal to transmit (such as luminance or contrast). Under such circumstances, there are no video frames, so that sensing and processing is continuous and frame-free. When using TFS coding, a global system-wide reset is provided and each pixel encodes its signal by the time between this reset and the time of the only spike it generates. Sensing and processing is frame-constraint. However, TFS is a highly compress coding scheme (each pixel generates at the most one spike per frame) and frame time can be dynamically adjusted to an optimum minimum by subsequent processing stages. TFS and subsequent ideas were originally proposed by Thorpe based on neuro physiological and psychophysical experiments [11], and have evolved to practical very high speed image processing software techniques [42].

Computing contrast on the focal plane significantly reduces data flow, while relevant information for shape and object recognition is preserved.

Previously reported plain spatial contrast retinae [43]-[4]-[14] compute a contrast current per pixel $I_{cont}(x, y)$ as the ratio between pixel’s locally sensed light intensity $I_{ph}(x, y)$ and a spatially weighted average of its surrounding neighborhood computed with some kind of diffusive network

1. This chapter of the thesis is based on a previous reported paper ([23]).
where I_{ref} is a global scaling current. Since this is always positive, let us call it “unipolar” contrast computation, with contrast being computed as the ratio between two photo currents. This yielded circuits where no subtraction operation was required. This was crucial to maintain mismatch (and precision) at reasonable levels. Note that for computing I_{avg} and I_{cont} circuits have to handle directly photo currents, which can be as low as pico-amperes or less. Performing a simple mirroring operation introduces mismatches with errors in the order of 100% [14]. This can be overcome by increasing transistor area, but then leakage currents may become comparable to the available photo currents. Consequently, while handling photo currents, it is desirable to keep complexity at a minimum. Therefore, from a circuit point of view, the way of computing contrast as in eq. (4.1) was very convenient. However, this presents an important drawback: when there is no contrast ($I_{\text{avg}} = I_{\text{ph}}$) then $I_{\text{cont}} = 0$. In an AER circuit this means that a pixel sensing no contrast will be sending out information (events) and consuming communication bandwidth on the AER channels. This is contrary to the advantages of AER (where it is expected that only information relevant events will be transmitted) and contrary to the advantages of computing contrast at the focal plane (so that only contrast relevant pixels need to send information). In another work [14], although spatial contrast was computed by eq. (4.1) in the retina, a post-processing with AER (convolution) modules was added to effectively compute the Weber Contrast as the signed quantity

$$I_{\text{cont}}(x, y) = I_{\text{ref}} \frac{I_{\text{ph}}(x, y)}{I_{\text{avg}}(x, y)} - 1$$ \hspace{1cm} (4.2)$$

This reduced significantly the data flow (from about 400keps to about 10keps), but also at the expense of reducing the speed response of a pixel by a factor of about 10.

In this chapter, we present a new spatial contrast retina design [23], where the contrast computation follows eq. (4.2). The design is based on the original contrast computation circuit by Boahen [43], which has been improved to overcome its inherent limitations on mismatch, ambient light dependence, and critical controllability. It has also new functionalities. We have signed output. Furthermore, and adjustable thresholding mechanism has been included, such that pixels remain silent until they sense an absolute contrast above the adjustable threshold. The retina also includes an optional global reset mechanism for operation in ambient-light-independent Time-to-First-Spike Contrast Computation Mode. A 32 x 32 pixel test prototype was fabricated in 0.35 μm CMOS technology.

2. Weber Contrast is defined as $WC = (I-I_{\text{avg}})/I_{\text{avg}}$ for a pixel photo current with respect to its neighbourhood average photo current, or as $WC = (I_1-I_2)/(I_1+I_2)$ between two adjacent pixels or regions. Both expressions are equivalent by making $I = I_1$ and $I_{\text{avg}} = (I_1+I_2)/2$.

3. keps stands for “kilo events per second”.
4.2 Prior AER Mismatch-Calibrated Unipolar Spatial Contrast AER Retina

The AER contrast vision sensor is based on a previous design [14] presented by Costas et al. in 2007. Figure 4.1 shows the basic schematic of the contrast computation circuit used in the previous unipolar spatial contrast retina. A p+/nwell photo diode senses current $I_{ph}(x,y)$ that is replicated twice using a sub-pico-ampere current mirror [36]. The first replica is used in a cascaded diffusive network [44], which implements the discrete approximation of the 2D Laplacian equation

$$I_{ph}(x, y) = \left(1 - \lambda_x \frac{\partial^2}{\partial x^2} - \lambda_y \frac{\partial^2}{\partial y^2}\right) I_{avg}(x, y)$$

This equation provides a good spatial average of I_{ph} over neighboring pixels, such that closer pixels contribute more to this average than distant pixels. The second replica of the photo current is fed together with $I_{avg}(x, y)$ to a translinear circuit computing the ratio between both, scaled by
reference current I_{ref}. The resulting current $I_{\text{cont}}(x, y)$ is thus proportional to a unipolar contrast (as in eq. (4.2)) and is fed to an integrate-and-fire neuron generating periodic spikes with a frequency proportional to $I_{\text{cont}}(x, y)$. Scaling current I_{ref} is made locally trimmable for each pixel in order to compensate for all mismatch contributions from the photo diode, current mirror, diffusive network, translinear circuit, and integrate-and-fire neuron. As a result, inter-pixel mismatch contrast computation could be reduced from about $\sigma \approx 60\%$ to $\sigma \approx 6\%$ using 5-bit pixel registers to control $I_{\text{ref}}(x, y)$. Pixel complexity was kept relatively simple (104 transistors + 1 capacitor) thanks to the unipolar nature of the contrast computation, and the whole pixel could be fit into an area of $58\mu m \times 56\mu m$ in a $0.35\mu m$ CMOS process. The main drawback is that pixels with no contrast would generate output events at a constant rate proportional to I_{ref}. To overcome this, the 4-AER-module system shown in Figure 4.2 was assembled to compute effectively a bipolar contrast as in eq. (4.2). A uniform image AER flow with negative sign bit was merged with the retina AER flow and fed to an AER convolution chip [27] configured to operate as an array of signed (bipolar) integrators. As a result, the background DC component in eq. (4.1) was removed, yielding a computation equivalent to that in eq. (4.2). However, as a backside effect, the effective firing rate of a pixel at the output channel was reduced by a factor of 8, thus diminishing its speed response. In the design presented in this chapter, this is solved by performing all the bipolar contrast computation at the sensor chip using an improved version of Boahen’s original biharmonic contrast computation circuit.

4.3 Boahen Spatial Contrast Pixel

In the spatial contrast sensor presented in this thesis all these drawbacks are solved by performing all the signed-spatial-contrast computation at the sensor chip using an improved version of Boahen’s pixel circuit [44]. The continuous approximation of Boahen’s pixel circuit, shown in Figure 4.3 solves approximately the following equations [44]
Chapter 4: The AER Spatial Contrast Vision Sensor

Solving for I_h results in the biharmonic equation used in computer vision to find an optimally smooth interpolating function of the stimulus I_{ph}. Consequently, the output $I_c(x, y)$ is the second order spatial derivative of the interpolation I_h according to the bottom eq. (4.4). Since the interpolation is a spatially integrated version of the stimulus, I_c can be interpreted as a version of a first order derivative of the stimulus, therefore, spatial contrast. This can also be understood with the help of Figure 4.4. The top trace shows a step stimulus I_{ph} and its spatial average (I_{avg} or I_h). The center trace shows the contrast computation as I_{avg}/I_{ph}, and the bottom trace shows the contrast computation as the second order spatial derivative of I_h. Both are equivalent. According to the bottom eq. (4.4), I_c includes a DC term I_u.

Obtaining an expression for each pixel output from equations (4.4) is not trivial and intuitive. Each pixel output current depends on all the pixels of the retina. An approximation given by Boahen [44] for each pixel output from equations (4.4) is

$$I_{cont}(x, y) = I_{ref} \frac{I_{ph}(x, y)}{\langle I_{ph} \rangle + I_{ph}(x, y)}$$

where $\langle I_{ph} \rangle$ is the average photo current in the pixel’s surrounding neighborhood. Obviously, closer neighbors will have higher influence on the output and far pixels will not have a noticeable effect. By adjusting I_{cc}, neighbors influence can be controlled.
Chapter 4: The AER Spatial Contrast Vision Sensor

The original circuit implementation of this model suffered from a series of drawbacks. First, mismatch was comparable to output signal. Second, output signal would degrade for the same contrast stimulus when changing lighting conditions. Third, bias voltages V_{cc} and V_{hh} in Figure 4.3 had very narrow and critical tuning range. All three drawbacks have been improved with the present implementation.

4.4 Improved Signal-Spatial-Contrast Pixel

Figure 4.5 provides an overall block diagram, indicating the signals interchanged between blocks. The pixel contains three main parts: (1) the photo sensing and contrast computation part, (2) the calibration part, which provides the ambient light independent contrast current I_{cont}; (3) the integrate-and-fire part, which includes refractory circuitry, thresholding, and TFS mode; (4) and the pixel AER communication circuitry that sends out events to the periphery. Let us now describe each one.

A. Compact Calibration Circuit

As we explained previously, one of the main drawbacks of prior AER contrast retinas was high mismatch. To overcome that problem, we reduce pixel mismatch by introducing calibration. One dominant source of mismatch is the DC component I_u in eq. (4.4). Since this current is set

Fig 4.4: Interpretation of spatial contrast computations.
constant, independent of lighting conditions, we can directly subtract it with a trimmable current source. The output current will thus be directly the bipolar contrast current we were looking for. To implement the trimmable current source, we follow the explained compact circuit based on series transistors association [13] previously explained. Figure 4.6 shows the basic principle behind this circuit. Each switched MOS operates as a segment of an effective longer MOS whose length is controlled digitally by switching individual segments from ohmic to saturation, and vice versa. The key consists in making each segment to contribute approximately as a power of 2 to the total length. The digital control word \(w_{cal} = \{b_{N-1}...b_1b_0\} \) sets the state of the switches. As a result, the effective length is digitally controlled as in a digital-to-analog conversion. On the right of Figure 4.6 we show the symbol of a digi-MOS (digitally-controlled MOS) which we use to represent the circuit on the left.

To calibrate the circuit, we use the second approach described in chapter 3, [13]. This scheme has higher precision at the calibration point but calibration degrades faster when bias cur-
rents are scaled. In our particular case, we were interesting in achieving the highest precision as the bias current I_u value will not be scaled significantly after calibration.

Figure 4.7 shows the circuitry used to subtract the DC component I_u of the contrast current. Transistors to the left of the dashed line are shared by all pixels and are located at the chip periphery, while those to the right are replicated for each pixel. Current I_u' sets the subtracting DC level (while also introducing mismatch), while I_{cal} is adjusted to a tuning range covering the interpixel mismatch. Transistors M_{1-4} form a translinear loop [44], thus $I_{cal} = I_1 I_2 / I_{3n}$. And I_{3n} is a mirrored version of I_3 by transistors M_p and M_q. Transistor M_q is digi-MOS of Figure 4.6. Consequently, I_{cal} is proportional to the pixel calibration word $w_{cal}(x,y)$, which is stored on in-pixel static RAM latches loaded at start-up. Note that current I_{cal} could have been generated directly by current mirror $M_p - M_q$. However, in this case, if one wants to scale $\{I_u, I_{cal}, I_u'\}$ globally (to adjust the retina output frequency range) the circuit would change the current through the calibration branch containing M_q. On the contrary, with the circuit in Figure 4.7 one can scale $\{I_u, I_{cal}, I_u'\}$ while keeping the calibration branch current I_{3n} (and I_3) constant, and scale through peripheral currents I_1 and/or I_2. This way, calibration degrades less when tuning the output frequency range.

B. Photo Sensing and Contrast Computation

Figure 4.8 shows how Boahen’s contrast computation circuit has been modified to include a current biasing scheme for controlling the original voltages V_{cc} and V_{hh} in Figure 4.3. This way, gate voltages V_{cc} and V_{hh} tend to follow voltage excursions at nodes ‘C’ and ‘H’.

The first advantage of this is that biasing will adapt to ambient light conditions. For example, if all photodiode currents are scaled up/down by the same factor, the voltage at all nodes ‘H’ will follow it logarithmically. Since I_u is constant, the voltage at node ‘C’ will thus also follow the same shift. Since bias currents I_{hh} and I_{cc} are kept constant, the gate voltages of transistors
Chapter 4: The AER Spatial Contrast Vision Sensor

M_h and M_c will thus follow also this same global voltage shift, adapting themselves to the global light change.

The second advantage of this current biasing scheme is that it attenuates mismatch. After doing careful mismatch analysis and identifying the main sources of mismatch for this circuit, one can find out that transistor M_a and current I_u are the dominant sources of mismatch. This can be understood as follows. Mismatch in I_u goes directly into the DC offset of I_c, which will be calibrated by I_{cal}. Mismatch of M_b is less critical because its inter-pixel gate voltage (node ‘C’) variability affects the bottom diffusive grid and the computation of the average current I_h. Thus its variability impact is attenuated by the average computation. However, M_a mismatch (V_{gs} variation of M_a) changes directly the source voltage of M_b, affecting directly the gain of contrast output (coefficient ‘b’ in eq. (4.4)), whose effect is not directly calibrated by I_{cal}. Consequently, M_a needs to be sized to minimize mismatch. The effect of I_u will be compensated by calibration, and the effect of M_a will be attenuated by the current biasing scheme. Note that mismatch in all M_a transistors will introduce random voltage variations at nodes ‘H’ and ‘C’. These variations will be transformed into random lateral currents through transistors M_h and M_c. The random currents through M_h will be collected by output current I_c and can be compensated by calibration. However, random currents through M_c transistors operate as if they were generated by the photo diodes. Thanks to the current biasing scheme, an increase in ‘C’ will increase the

Fig 4.8: Detail of photo sensing and contrast computation circuit.
gate voltage of the new bottom NMOS transistor, increasing its source voltage, thus increasing the
gate voltage of M_c, which will reduce the lateral random current. A similar effect will be happening
for transistors M_h.

Finally, the third advantage is a more robust means for biasing the lateral transistors. In the
original scheme, voltages V_{cc} and V_{hh} suffered from a very narrow and critical tuning range
(about 100mV or less). Now, bias currents I_{cc} and I_{hh} can be tuned over several decades, while
still perceiving their effect.

C. Integrate-and-Fire

Figure 4.9(a) shows the integrate-and-fire block. Input contrast current I_{cont} is integrated on
capacitor C_{int}. Two comparators detect whether the capacitor voltage V_{cap} reaches an upper
(V_{high}) or lower (V_{low}) threshold, triggering the generation of a positive (pulse+) or negative
(pulse-) event, respectively. To accelerate the comparisons, both comparators activate a positive
feedback loop (from V_{cap} to V_{dd04} for a positive event, or from V_{cap} to V_{gno4} for a negative
event).

After event generation, capacitor C_{int} is reset to the central voltage V_{ref}. This is done by
the reset circuit shown in Figure 4.9(b). This reset mechanism includes a refractory timing circuit
that inhibits the pixel from generating subsequent events before refractory capacitor C_{rf}. has
been discharged by the DC current source MOS controlled by V_{rfr}. The reset circuit also
includes the global TFS (Time-to-First-Spike) mode reset signal, which resets all pixel capacitors
C_{int} simultaneously. Note that this signal inhibits the positive feedback loops in Figure 4.9(a).
This allows resetting quickly those pixels generating an event when TFS becomes active.

Figure 4.9(c) shows the minimum contrast thresholding circuit. A comparator detects
whether capacitor voltage is above or below V_{ref} and turns on either a positive (I_{low}) or negative
(I_{high}) threshold current, which I_{cont} needs to exceed for producing an event. Figure 4.10 shows
the resulting relationship between integrate-and-fire circuit output frequency f_{out} and the input
signed contrast current I_{cont} while bias voltages V_{th}^+ and V_{th} are set to generate threshold cur-
cents I_{high} and I_{low}, respectively. Naturally, threshold transistors would also introduce mismatch.
Consequently, they were layed out with a large area of $2/20 \mu m$.

Figure 4.9(d) shows the two-stage comparators used in Figure 4.9(d). At stand by they are
biased at low current through V_{b1} and V_{b2}. However, during event generation its bias current is
increased. This increase starts when signals pulse starts to depart from its resting voltage and
stops after the pixel event reset signal ev_{rst} returns to its resting level. The comparator within the
thresholding circuit in Figure 4.9(d) does not have this feature, since this comparator only needs
to detect whether the so far accumulated contrast for the pixel is positive or negative, which is a
slow process compared to the event generation timings.
Fig 4.9: (a) Integrate and fire neuron. (b) Reset and refractory circuit. (c) Thresholding circuit. (d) Detail of comparators.
D. Communication Block Circuit

Finally, the AER pixel communication part in Figure 4.5 contains two identical “event block” circuits, which are shown in Figure 4.11. These are standard AER pixel communication circuits taken from Boahen’s row parallel event read-out technique [45]. When generating signed
Table 4.1: Chip Specifications.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>technology</td>
<td>CMOS 0.35μm 4M 2P</td>
</tr>
<tr>
<td>power supply</td>
<td>3.3V</td>
</tr>
<tr>
<td>chip size</td>
<td>2.5 x 2.6 mm²</td>
</tr>
<tr>
<td>array size</td>
<td>32 x 32</td>
</tr>
<tr>
<td>pixel size</td>
<td>80 x 80 μm²</td>
</tr>
<tr>
<td>fill factor</td>
<td>2.0%</td>
</tr>
<tr>
<td>photodiode quantum efficiency</td>
<td>0.34 @ 450nm</td>
</tr>
<tr>
<td>pixel complexity</td>
<td>131 transistors + 2 caps</td>
</tr>
<tr>
<td>current consumption</td>
<td>65μA @ 10keps</td>
</tr>
</tbody>
</table>

events, each pixel needs to provide two column event signals col+ and col-. This concept was already implemented and tested in prior designs [27] that required signed events.

4.5 Experimental Results

A 32 x 32 pixel test prototype AER signed spatial contrast retina chip was designed and fabricated in a double poly 4-metal 0.35μm CMOS process with a power supply of $V_{DD} = 3.3V$. Table 4.1 summarizes the chip specifications. Figure 4.12 shows a micro photograph of the die, of size 2.5 x 2.6 mm². The whole chip, except the pad ring, is covered with the top metal layer leaving openings for the photo diode sensors. Figure 4.12 also shows the layout of a single pixel highlighting its components. Each pixel layout is a symmetrical speculation of its neighboring pixels. This way noisy digital lines are shared among neighbors, as well as power supplies, and noise sensitive bias lines. At the same time, noise sensitive lines are separated from noisy ones. Pixel area is $80 \times 80 \mu m^2$, including routing. The pixel was made up of 131 transistors and 2 capacitors (the capacitance of the integrate-and-fire circuit and the capacitance of the reset and the refractory circuit).

Figure 4.13 shows the experimental setup to characterize the temporal contrast sensor. The chip was mounted on the Caviar Board (a specific PCB designed to test generic AER devices). This board was connected to a USB port. The digital words to program the bias currents of each I-pot [35] were sent through this port. The outputs of the Caviar Board were sent to an AER bus. This bus was connected to a Mapper. The Mapper was a programmable device that was used to filter or remove the activity of some pixels for some specific measurements (latency characterization), without affecting the activity of the rest of the pixels. The output bus of the Mapper was connected the board USB2AER, [52], which sends the AER data from the bus to one of the USB computer ports. This information was processed by a Java program [47] that allows to see real time images. The USB2AER board was specially useful for real-time monitoring. The input bus to this board was replicated and sent to a Datalogger. This board has an internal memory that can store the data generated by 524,000 events and was used to save efficiently on the PC the AER information transmitted from the AER bus.
Chapter 4: The AER Spatial Contrast Vision Sensor

2.5mm x 2.6mm die, and zoom out of 80μm x 80μm pixel (layout) indicating the location of its components.

Fig 4.12: Microphotograph of 2.5mm x 2.6mm die, and zoom out of 80μm x 80μm pixel (layout) indicating the location of its components.
Fig 4.13: Experimental setup and photo of the retina and main boards used to test the imager.
4.5.1 Pixel Frequency Range

In order to control the pixel output frequency, one of the corner pixels had its integrating capacitor node connected to a low-input-capacitance analog buffer for monitoring purposes. Pixel integrating capacitors have a capacitance of about $C_{int} \approx 118 fF$ (obtained from the layout extractor), while the corner pixel with monitoring buffer has a total capacitance of about $C_{mntr} \approx 196 fF$ (estimated from layout extraction and simulation). Figure 4.14 shows recorded waveforms (for positive and negative currents) for this capacitor when turning off horizontal interactions among neighboring pixels (by turning off transistors M_h and M_c in Figure 4.8), and for a typical value of $I_u \approx 100 pA$. By changing I_u (with $I_u' = I_{cal} = 0$) or I_u' (while $I_u = I_{cal} = 0$), pixel oscillation frequency could be tuned between $1.2 Hz$ and $5KHz$. For the maximum frequency the arbitrating periphery inserts varying delays. This is because all pixels are also firing with maximum frequency (even higher than the pixel we are observing which has slightly higher integrating capacitance) and are collapsing the arbiter. Consequently, in a practical situation where only a small percentage of the pixels would fire with maximum frequency, they would be able to fire with a higher than $5KHz$ maximum frequency.

4.5.2 Calibration

Although the retina can work without calibration, in order to use have bipolar output and reduce mismatch, the first requirement is to calibrate it. For this, the retina was exposed to a uniform stimulus, while biased for normal operation conditions but without thresholding. In our case, normal operation conditions are $I_u = 150 pA$, $V_{ref} = 1.65 V$, $V_{high} = 2.8 V$, $V_{low} = 0.45 V$, $I_{hh} = 10 pA$, $I_{cc} = 5 pA$. Also, before calibration, we set $I_{cal} = I_u' = 0$. Under these conditions, retina output events are recorded, from which one can obtain the firing frequency of each pixel. Next, we set current $I_u' = 80 pA$ so that the pixel with minimum frequency has a frequency close to zero (or slightly negative). Under these conditions the resulting histogram of pixel frequencies distributions is shown in Figure 4.15.(a) After this, the calibration circuit biases (I_1, I_2, I_3 in Figure 4.7) were set for optimum coverage of this distribution, and for each pixel the optimum calibration word $w_{cal}(x, y)$ was found. This is computed off-line by optimally combining biases $\{I_1, I_2, I_3\}$ and calibration words $w_{cal}(x, y)$, following a pre-established optimization criterion. In our case, we allowed for a few outliers in order to minimize the residual standard deviation. One could also target to minimize the spread among the most extreme pixels at the expense of a higher standard deviation. After this process, the histogram of calibrated pixel frequencies obtained is shown in Figure 4.15(b). The residual inter-pixel standard deviation is $26 Hz$. As we will explain later, maximum contrast frequency for these biases is $\pm 3500 Hz$. Consequently, post-calibration residual mismatch is 0.74%. Figure 4.16 shows the calibration ladders obtained for the 1024 pixels that compounds the retina. We have also plotted with red asterisks the optimum output frequencies after calibration versus the optimum calibration word for each pixel. Finally, in Figure 4.17 we have plotted the output frequencies before calibration (with a bipolar output subtracting the current I_u) and after calibration. Output frequencies were calculated counting the pixels spikes within a time interval. Datalogger [46] was used to save the number of spikes generated for each pixel during the interval.
Fig 4.14: Recorded waveforms at the integrating capacitor. Minimal oscillation frequency (1.2 Hz), Typical oscillation frequency (466 Hz), and maximum oscillation frequency (5 KhZ).
Chapter 4: The AER Spatial Contrast Vision Sensor

Figure 4.18 shows how the standard deviation of the post-calibration residual mismatch changes with illumination level. The figures shows three superimposed graphs. Each correspond to performing calibration at different illumination levels \{50, 5, 1, and 0.25\ Klux\}. The worst case situation corresponds to calibrating at about 1k-lux and using the retina at very high light conditions, resulting in a standard deviation of almost \(140\ Hz\) (3%). On the other hand, the optimum situation corresponds to calibrating at 15k-lux, which results in a standard deviation of less than \(80\ Hz\) (1.8%) over the entire 5 decade range.

The calibration process is all done off-line. However, it is conceivable to implement it fully on-chip (through, for example, a vhdl described state machine), since it only requires to expose the chip to uniform illumination (one can simply remove the optics), compare the pixel frequencies (for which not even a precise clock reference is required), and compute an optimum set of calibration weights.

4.5.3 Contrast Step Response

Figure 4.19 illustrates the retina response to a luminance step of different contrast levels, while thresholding is turned off. Input stimulus is printed paper, providing a static image with a half dark and a half grey side. The half gray side intensity is adjusted between 100% (white) and 30% (darkest gray). Table 4.2 indicates the relationship of the luminance steps, with the ratio of photo currents between the gray and black parts, and the resulting Weber Contrast, defined as
The left column in Figure 4.19 shows this input stimulus image. The center column in Figure 4.19 shows the retina output response before calibration, while the right column shows the retina response after calibration. Central gray level is zero pixel frequency. Brighter pixels are firing positively signed events, while darker pixels are firing negatively signed events. Absolute max-

$$WC = \frac{I_{\text{light}} - I_{\text{dark}}}{I_{\text{light}} + I_{\text{dark}}}$$ \hspace{1cm} (4.6)$$

The left column in Figure 4.19 shows this input stimulus image. The center column in Figure 4.19 shows the retina output response before calibration, while the right column shows the retina response after calibration. Central gray level is zero pixel frequency. Brighter pixels are firing positively signed events, while darker pixels are firing negatively signed events. Absolute maxi-

<table>
<thead>
<tr>
<th>luminance step</th>
<th>100% to 0%</th>
<th>70% to 0%</th>
<th>50% to 0%</th>
<th>30% to 0%</th>
<th>10% to 0%</th>
<th>0% to 0%</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I_{\text{light}/I_{\text{dark}}}$</td>
<td>9</td>
<td>6</td>
<td>3.6</td>
<td>2.4</td>
<td>1.5</td>
<td>1</td>
</tr>
<tr>
<td>Weber Contrast</td>
<td>0.80</td>
<td>0.72</td>
<td>0.56</td>
<td>0.41</td>
<td>0.20</td>
<td>0</td>
</tr>
</tbody>
</table>
4.5.4 Contrast Sensitivity

An important characterization for a spatial contrast retina is its contrast sensitivity what is the output event rate for a given input contrast stimulus. We have characterized spatial contrast sensitivity for the positive event branch and the negative event branch (see Figure 4.5) separately, since they have separate circuitry. Usually, under normal operation, the retina will be biased to have the same sensitivity for positive and negative events. However, there might be situations where one would prefer to set different contrast sensitivities for positive and negative events, and this retina offers this possibility. To characterize pixel contrast sensitivity, a gray level step stimulus (as shown in Figure 4.19) of different contrast values, was used. Pixels frequencies of the two columns with the highest activity (the ones just on the left and right of the stimulus center) were recorded. This process was repeated for different bias values for V_{high} and V_{low}, with

![Graph showing output frequencies before and after calibration.](image-url)

Fig 4.17: Output frequencies before and after calibration.
The measured maximum contrast sensitivity was $4400 \text{Hz} / \text{WC}$ (Hz per Weber Contrast) for $\text{WC} = 0.8$. Error bars indicate inter-pixel variability.

To show the sensitivity dependence with illumination, the maximum output frequency for a Weber Contrast of $\text{WC} = 0.8$ was measured (for both signs of contrast) with different illumination levels. As shown in Figure 4.20(b), sensitivity degrades slightly when illumination decreases. Sensitivity remains almost constant over the first two decades, and approximately doubles over the second two decades.

4.5.5 Contrast Thresholding

In Figure 4.21, the typical pixel output when the visual field is swept with a grey level bar stimulus of $\text{WC} = 0.8$ is shown. The x-axis indicates bar position in row number units. The pixel output spike frequency reaches the maximum value when the stimulus is at the pixel’s row. This value depends on the width of the sweeping bar. Several outputs using different bar widths have been plotted for the same pixel. The bar width is expressed in projected pixel units. The maximum frequency is proportional to the stimulus width. In both cases, the following voltages were used:

$$V_{\text{ref}} = 1.65\text{V}.$$

The results are shown in Figure 4.20(a).
Chapter 4: The AER Spatial Contrast Vision Sensor

With these settings, it is also possible to fully inhibit positive or negative events by setting either I_{high} or I_{low} (see Figure 4.9(c)) to sufficiently large values. Asymmetrical thresholds ($I_{\text{low}} \neq I_{\text{high}}$) can also be used. Therefore, positive and negative events can be inhibited independently. In Figure 4.22, the effect of thresholding is shown. First, the visual field was swept with a 100% contrast bar for different thresholds. Figure 4.22(a) shows the output frequency for pixel (17,11) when setting symmetric thresholds. Figure 4.22(b) shows the same pixel results but when setting only threshold values to inhibit positive events. The negative output frequency remains constant.

The main advantage of thresholding is to remove the residual mismatch after calibration. Pixels usually spike with a low residual output frequency after calibration. Positive and negative thresholds can be set to remove these undesirable outputs after calibration. Figure 4.22(c-e) show

<table>
<thead>
<tr>
<th>WC</th>
<th>input</th>
<th>before calibration</th>
<th>after calibration</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>100%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0%</td>
<td>70%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0%</td>
<td>50%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0%</td>
<td>30%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig 4.19: Retina response to a luminance step changing Weber Contrast. Left column is input stimulus. Centre column is output response before calibration, and right column is output response after calibration.

$V_{\text{high}} = 2.9V$, $V_{\text{low}} = 1.4V$ and $V_{\text{ref}} = 1.65V$. With these settings, $V_{\text{high}} - V_{\text{ref}} > V_{\text{ref}} - V_{\text{low}}$, so negative events were enhanced.
Fig 4.20: Contrast sensitivity measurements. A stimulus step (as in Figure 4.19) was applied and max and min frequencies were recorded. Top panel shows max and min frequencies for different stimulus step contrasts and different threshold values. Bottom panel shows how the maximum and minimum frequencies depends on illumination ($WC=0.8$).
some snapshots captured with the contrast retina. Central gray color indicates zero output (no contrast). Positive events range from this gray to black and negative events range from this gray to white. The three snapshots were taken for different values of the positive and negative thresholds. For the three cases, \(I_u = 150pA \). In Figure 4.22(c) a positive threshold current of 1nA was set to inhibit positive events completely after calibration. \(I_{low} \) was 150pA. In Figure 4.22(d) a symmetric threshold of 80pA was set after calibration. In Figure 4.22(e) the retina output without neither calibration nor thresholding is shown. Above each snapshot the sum of all pixels’ frequencies \(f_{total} \) is indicated. We can see, by comparing (d) and (e), that calibration reduces event flow (communication bandwidth) while enhancing contrast gain.

4.5.6 Latency Characterization

Sensor latency is the time it takes from the occurrence of the illumination change at the photo diode to the output of an address event. Sensors with quick answers to stimuli are suitable to be used as part of a feedback controller. Latency depends on the pixel, the asynchronous bus arbitrer and the periphery.

To characterize the retina latency we proceeded as follows. We stimulated a LED with a step signal to turn it ON, focused it over a central region of the sensor array, and recorded the time delay between the step signal and the first event \(Reqst \) coming out of the pixel under test from that region. The Mapper was programed to allow spike only the pixel under test of the stimulated
An oscilloscope working in single mode was used to measure the latency. The measurements were repeated by inserting different neutral density filters to attenuate light intensity from about 50k-lux down to 2 lux. The resulting latencies are shown in Figure 4.23. The measurement was repeated by focusing the LED over different regions of the pixel array. The bars in Figure 4.23 show the spread obtained when repeating measurements. As can be seen, latency changes

![Figure 4.22: Effect of thresholding. (a) Bar is swept for different symmetric thresholds. (b) No threshold for negative events, and positive event thresholds are changed. (c) Events captured for calibrated retina when all positive events are inhibited by setting a high positive threshold. (d) Events captured for calibrated retina with symmetric threshold. (e) Events captured for uncalibrated retina.](image)

region. An oscilloscope working in single mode was used to measure the latency. The measurements were repeated by inserting different neutral density filters to attenuate light intensity from about 50k-lux down to 2 lux. The resulting latencies are shown in Figure 4.23. The measurement was repeated by focusing the LED over different regions of the pixel array. The bars in Figure 4.23 show the spread obtained when repeating measurements. As can be seen, latency changes
Chapter 4: The AER Spatial Contrast Vision Sensor

from about 10\text{ms} down to about 0.1\text{ms} when illumination varies over almost 5 decades. This means that latency is dominated by the photo sensing circuits. However, latency does not scale proportionally to light, and consequently this retina does not suffer from the severe Light-to-Time restriction listed in Table 1.1.

4.5.7 Natural Scenes

Although the retina resolution is rather low (32 x 32 pixels) for observing natural scenes, Figure 4.24 shows some captured images when observing natural elements, which give a first order feeling of how an up-scaled retina would respond under a natural scene. A Java program [47] was used to convert AER data into a sequence of frames for real-time visualization and monitoring.

4.5.8 TFS Output Mode

As mentioned on page 112, the integrate-and-fire circuit of the retina pixel can be configured to operate in TFS mode. In this mode, the refractory period of the retina has to be set to its largest possible value (by connecting voltage V_{rfp} to V_{dd}) to guarantee that each pixel will fire at the most one single event. Then a periodic reset pulse has to be provided for global signal \overline{TFS}.

Fig 4.23: Latency measurements under changing illumination conditions.
This can be done in several ways. One trivial option is to reset at a fixed preset frequency. However, another more efficient option is by counting the output events. Since output events are coming out in decreasing order of pixel contrast, high contrast pixels (either positive or negative) come out first. These are the pixels carrying more relevant information, for example, for a recognition application. Consequently, one could add a simple counter at the R_{qst} line and have it generating a reset pulse for T_{FS} after each M events. This way, a dynamic “frame time” T_{frame} would
be produced which self adjusts to the contrast level of the scene, independent of ambient light. High contrast scenes would self-tune to faster frames, while low contrast scenes would self-tune to slower frames for the same amount of contrast information. Other more sophisticated options could use a post processing event based system for performing a given recognition and provide the reset pulse once a recognition has been achieved, or reset after a preset time if no recognition was possible. In what follows we count a fixed number of events M. Figure 4.25 illustrates the effect of changing M when observing the paper clip of Figure 4.24. Note that setting M to low values also removes background noise.

The TFS output mode is also insensitive to illumination (in first order), since it operates directly on I_{cont} within the integrate-and-fire circuit (see Figure 4.9(a-b)). To show this, several snapshots of the paper clip of Figure 4.24 were taken under different illumination conditions. As shown in Figure 4.26, T_{frame} is the sum of T_{first} (the time the retina needs to generate the first spike after the reset) and T_M (the time between the first and M-th spike). Figure 4.27 shows the value of T_{frame} for different values of M and illumination levels. T_{frame} is almost independent on illumination and is approximately constant for a given M. Figure 4.27 also shows the value of T_{first} versus illumination. In principle, T_{first} should not depend on ambient light because this reset is performed within the integrate-and-fire circuit (see Figure 4.9(a)) and not the photo sensing cir-
cuit (Figure 4.8). However, Figure 4.27 reveals a slow-down process when decreasing ambient light (between 5k-lux and 200 lux, approximately). This is probably due to switching crosstalk between the integrate-and-fire and photo sensing circuits, which introduces a switching transient in the latter that cannot be prevented when the photo currents are too small. Such problem can be attenuated in future designs by improving decoupling between the two stages, for example, through cascoding techniques.

4.5.9 Power Consumption

Chip power consumption has been characterized. Supply voltage is 3.3V. In principle, it would depend on both static bias conditions and output event rate. However, in practice, it is dominated by the latter, because of the high consumption of digital pads communicating output events. Static power dissipation is negligible, since pixel current biases are set to relatively low values. Typical bias settings are $I_u = 150pA$, $I_{low} = 50pA$ and $I_{high} = 50pA$. This results in a pixel static current consumption of $15nA$. At very low output event rate (1keps) we measured a chip current consumption of $40\mu A$ ($130\mu W$). Figure 4.28 shows the measured current consumption of the chip as a function of output event rate. As can be seen, for normal operation regimes (between 100keps and 1Meps) current consumption varies between $200\mu A$ and $2mA$ ($660\mu W$ - $6,6mW$).

Fig 4.27: Effect of Illumination on T_{frame} and T_{first}
Pixel output frequency (or TFS timing) range is directly controlled by bias current I_u (see Figure 4.8 and Figure 4.9(a)). Therefore, I_u controls also the overall power consumption and the speed-power trade-off.

4.6 Discussion

In this chapter, a new AER signed spatial contrast retina has been presented. It uses an improved and calibrated version of Boahen’s contrast circuit. The design avoids the problem of AER communication bandwidth consumption present in prior designs. Furthermore, it also includes a thresholding mechanism, so that only pixels sensing spatial contrast above a given threshold generate events. A calibration scheme is included to partially compensate for pixel mismatch. An optional TFS coding scheme is also available. Extensive experimental results from a test prototype of 32 x 32 pixels, fabricated in a 0.35μm CMOS technology, are provided. Table 4.3 summarizes the imager main specifications.

An interesting advantage of this contrast retina is its fast response time as well as low communication throughput, compared to commercial video cameras rendering full frames every 30-40ms. Information throughput is reduced because only relevant contrast information is provided. Regarding speed response, for example when operating in rate coded mode, since active pixels fire at frequencies in the range of 1-5kHz, they would all update its state within fractions of
one mili second, independent of ambient light. In TFS mode, the first front of relevant events ($M = 250$ in Figure 4.27) is available in less than 1 ms. If the stimulus changes, the retina latency depends on lighting conditions, ranging from about 100ms at sun light (50k-lux) to 10 ms at moon light (2 lux), with 1 ms for indoor ambient light (1 k-lux).

Consequently, the complexity of developing spike based AER spatial contrast retinæ, as opposed to conventional frame-scanned video cameras, is justified by its higher speed response for a very wide range of illumination conditions, while maintaining the information throughput low and ambient light independent. Although information throughput is low, relevant (contrast) information is preserved, which results in significant processing performance improvement for subsequent stages.

<table>
<thead>
<tr>
<th>Functionality</th>
<th>Light to time restriction</th>
<th>Latency</th>
<th>Dynamic Range</th>
<th>FPN</th>
<th>Fill Factor</th>
<th>Pixel Size μm^2</th>
<th>Fabrication Process</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spatial Contrast to Number of Events</td>
<td>NO</td>
<td>0.1-10ms</td>
<td>>100dB</td>
<td>0.6%</td>
<td>2%</td>
<td>80x80</td>
<td>0.35μm 2M 2P</td>
<td>0.66-66mW</td>
</tr>
</tbody>
</table>
CHAPTER 5

The AER Temporal Contrast Vision Sensor

5.1 Introduction

Motion detection is one of the most important tasks that the brain can perform. By detecting movement, plenty of relevant information about our environment is received. Temporal contrast detection is useful for the perception of relative depths, 3D structures, and for grouping objects that we can see. In our brain, there is one specialized pathway in motion detection.

Several specific AER temporal contrast vision sensors have been reported previously. The first specific one was presented by Mallik et al. [7] in 2005 and was based on the prior work of V. Gruev et al. [48] describing a pipeline temporal difference imager. Mallik’s retina modified the traditional active pixel sensor (APS) to detect a quantize absolute change in illumination. It was a frame-based device with some advantages of AER systems. Several motion detection sensors have been reported [9]-[24] recently. They are not frame-based devices and have several advantages over conventional vision systems based on frames. Their most important features are high dynamic range, very high speed tracking and very low power consumption.

AER imagers are inherently faster than frame-based sensors. The main reason is that they can detect illumination changes continuously. There are not dead times between frames where changes can not be detected.

In this chapter, we present a new AER temporal vision sensor. It is based on the prior work of Lichtsteiner et al. [9]. Its pixels respond asynchronously to relative changes in intensity. The sensor directly encodes scene reflectance changes reducing data redundancy and bandwidth consumption. The new imager has improved features and pixels have smaller size. As we will discuss later, it is specially useful for very high speed tracking and surveillance applications.

In order to increase the sensitivity and the speed response of the retina, two amplifiers were added after the photoreptor stage. Both of them operate in saturation region. By this way, the total gain of the pixel can be increased over the prior design proposed by Lichsteiner and his colleagues. In that design, the total pixel gain was equal to the ratio between the two capacitances at the differencing stage. To achieve a total gain of 20 with good matching, large capacitors were required. If we use amplifiers, we can decrease the gain of the differencing circuit. This means that we can reduce the size of the capacitors and achieve a higher fill factor and higher gain at the same time. More gain also implies more bandwidth and more sensitivity to temporal contrast.
138

stimuli. For high speed applications, high gain and sensitivity are desirable because changes in local illuminance occur very fast. As we will discuss later, high gain also implies low latency response. The only drawback of using amplifiers is more power consumption. However, as we will discuss later, the total chip consumption has reasonable values in comparison to prior designs.

The new imager was fabricated and tested. A 128 x 128 pixels prototype was designed in a 0.35μm CMOS technology. Extensive experimental results are provided showing the feasibility of the design. Examples, of high speed tracking applications are also displayed along the chapter.

5.2 The Pixel Circuit

Figure 5.1 shows the overall diagram of the temporal contrast pixel. The pixel contains four main parts: 1) The photoreceptor, 2) Two amplifiers to increase sensitivity and speed response, 3) An differentiator to detect temporal luminance variations, 4) Communication interface with the periphery.

The two amplifiers are connected to a external circuit (AGC control) that sets the gain of amplifiers to a value that does not depend on illumination.

Let us describe all these blocks that compound the pixel circuit and the external AGC circuit.
Chapter 5: The AER Temporal Contrast Vision Sensor

A. Photoreceptor

The first stage is the photoreceptor circuit. That circuit responds logarithmically to changes in local illumination. There is an offset at the output of this stage, V_{out}, that will be amplified later. This is not a problem because it will be removed with the differencing circuit than only responds to variations in the local illumination. By adjusting V_g, V_{bp1} and V_{cas}, we can vary the speed of the photoreceptor. The voltage at the output is given by the following expression,

$$V_{out} = \kappa_p V_g + n U_T \ln \left(\frac{I_{ph}}{I_{sp}} \right) = K + n U_T \ln \left(\frac{I_{ph}}{I_{sp}} \right) \quad (5.1)$$

B. Pre-amplifiers

To increase the sensitivity and the speed response of the retina, two amplifiers were added after the photoreceptor stage. Both of them operate in saturation region. If we compare the new design to the prior design of Lichsteiner [9], the total gain has been increased and the pixel area has been reduced to the half. As we will discuss in section 5.4.1, FPN is similar because the ratio between gain and interpixel dispersion is approximately the same.

Figure 5.2 displays the schematics of one amplifier. Transistors M_2 and M_3 operate in strong inversion. The value of V_{ldc} is set by an external AGC circuit. By this way, DC levels at the output do not depend on illumination. In Figure 5.1, we can see how amplifiers are connected to the AGC circuit. Transistor M_2 is a current source that generates a bias current externally. M_1 is a source follower that introduces a voltage shift in V_{in} that can adjusted varying I_{bn1}, so $V_1 = V_{in} - \Delta V$. If M_2 and M_3 are in saturation region,

$$\left(\frac{W_2}{L_2} \right)^2 \beta_n \left(V_1 - V_{ldc} - V_{Th} \right)^2 = \left(\frac{W_3}{L_3} \right)^2 \beta_p \left(V_{dd} - V_{out} - |V_{Ip}| \right)^2 \quad (5.2)$$

Fig 5.2: Schematic of the amplifiers.
Solving for V_{out} and knowing that $V_1 = V_{in} - \Delta V$,

$$V_{out} = V_{dd} - |V_{Tp}| - \sqrt{(W_2/L_2)\beta_2 / (W_3/L_3)\beta_3} (V_{in} - \Delta V - V_{Th} - V_{ldc})$$ (5.3)

Where ΔV can be set by adjusting I_{bn1}. For a good operation, $\Delta V \approx 0.7V$. There are two amplifiers (A_1 and A_2) in each pixel, so the total gain at the output of the amplification stage is

$$G_T = G_1 G_2 = \frac{(W_{2_1}/L_{2_1})\beta_{2_1}}{(W_{3_1}/L_{3_1})\beta_{3_1}} \frac{(W_{2_2}/L_{2_2})\beta_{2_2}}{(W_{3_2}/L_{3_2})\beta_{3_2}}$$ (5.4)

In our particular case, both amplifiers were design to have the same gain $G_1 \approx G_2 \approx 4$ and $\Delta V_{cap} = G_1 G_2 \Delta V_{out}$. The DC component at the output will be removed with the differencing circuit. Gain mismatch is low and mismatch at the DC component does not affect the pixels output. Transistor sizes were chosen thoughtfully to operate in strong inversion with reduced currents. Thus, power consumption was reduced. Amplifiers are connected to AGC block. That block is placed in the periphery and senses the average photo current. This block sets the values of I_{ldc1} and I_{ldc2}, according the global illumination level. This way, DC levels at the amplifiers output are controlled and kept within the amplifiers dynamic range.

C. Differencing Circuit

This stage responds to relative changes at the voltage input with a gain equal to $G_3 = 5C/C$. There is a good match between the two capacitors. The differencing circuit also removes the DC component at its input. We can express the variations of voltage at the output as

$$\Delta V_{diff} = -G_3 \Delta V_{cap} = -G_1 G_2 G_3 \Delta V_{out}$$ (5.5)

And from eq. (5.1),

$$\Delta V_{out} = n U_T \ln \left(\frac{I_{ph}(\Delta t + t)}{I_{ph}(t)} \right)$$ (5.6)

The total pixel from the input to the output of this stage is $G_t = G_1 G_2 G_3$.

D. Communication Block Circuit

Figure 5.3(a) shows the schematics of communication circuit block. Pixels can detect the sign of the temporal contrast. There are two comparators with different adjustable thresholds V_{high} and V_{low} that generate positive or negative events (signed contrast) when V_{diff} is above the posi-
There is also a refractory circuit (see Figure 5.3(b)) that allows to control the time between consecutive events that one individual pixel can generate. This is specially useful when there are pixels with very high activity and we want to control the maximum activity in the AER bus. Finally there are two identical communication blocks, see Figure 5.3(c), that interact with the arbiter and the periphery. These are standard AER pixel communication circuits taken from Boahen’s row parallel event read-out technique [45].
When generating signed events, each pixel needs to provide two column event signals \(col^+ \) and \(col^- \). This concept was already implemented and tested in the AER spatial contrast retina [23] and prior designs [27] that required signed events.

5.3 Automatic Gain Control Block

This block is placed at the chip periphery and allows to control the DC levels at the output of the two amplifiers adapting them to the global chip illuminance level. In Figure 5.4(a), we can see the schematics of AGC circuitry. Its function is to maintain constant the DC levels at the output of the amplifiers of Figure 5.1, \(A_1 \) and \(A_2 \), by adjusting the voltages \(V_{ldc1} \) and \(V_{ldc2} \). All pixel amplifiers, \(A_1 \) and \(A_2 \), are connected to the external nodes, \(V_{ldc1} \) and \(V_{ldc2} \), respectively. The AGC control block has two identical amplifiers to the ones of Figure 5.2. The outputs of these amplifiers are set to a constant voltage, \(V_{odc1} \) and \(V_{odc2} \), that we can adjust. To set this constant voltages, there are two operational amplifiers connected to the output of each amplifier. Both of them have negative feedback to set up the voltages \(V_{ldc1} \) and \(V_{ldc2} \) that will be identical at the amplification stage and the AGC block.

The input of the circuit of Figure 5.4(a) is the average photo current sensed by 128 photo diodes placed around the pixels matrix, by this way voltages \(V_{ldc1} \) and \(V_{ldc2} \) can be set according to the overall chip illumination level. In Figure 5.4(b) we can see the circuit that senses the average photo current level. It has 128 photo diodes (distributed along the chip periphery) connected to one photoreceptor identical to the one of Figure 5.1. In this circuit, there is also a femtoampere current mirror [36] that copies the average sensed photo current. Finally, the output of circuit of Figure 5.4(b) is connected to the input of the AGC as is indicated in Figure 5.4. There is a capacitor at this input node to make the AGC block insensitive to very quick changes at the luminance level. We are only interested in slow global changes in the average chip illumination. The value of this capacitor was chosen to have a time constant of milliseconds. This is enough to detect a global change in illumination. For example, when we go out of a house, and the photo average photo current value, \(\overline{I_{ph}} \), changes significantly.

5.4 Experimental Results

A 128 x 128 pixel AER signed temporal retina chip was designed and fabricated in a double poly 4-metal 0.35 \(\mu \)m CMOS process with a power supply of \(V_{DD} = 3.3 \) V. Table 5.1 summarizes the chip specifications. Figure 5.5 shows a micro photograph of the die, of size 5.689x5.538mm\(^2\). The whole chip, except the pad ring, is covered with the top metal layer leaving openings for the photo diode sensors. Figure 5.5 also shows the layout of a single pixel highlighting its main components. Each pixel layout is a symmetrical speculation of its neighboring pixels. This way noisy digital lines are shared among neighbors, as well as power supplies, and noise sensitive bias lines. At the same time, noise sensitive lines are separated from noisy ones. Pixel area is 35.5x35.7\(\mu \)m\(^2\), including routing. The pixel was made up of 58 transistors and 3 capacitors (the two of the capacitive divider of the differencing circuit and the capacitance of the refractory circuit).

Figure 5.6 shows the experimental setup to characterize the temporal contrast sensor. The chip was mounted on the Caviar Board (a specific PCB designed to test generic AER devices).
Fig 5.4: (a) AGC circuit block. (b) Detail of the circuitry used to sense the average chip illuminance, \bar{I}_{ph}, highlighting its main parts.
This board was connected to a USB port. The digital words to program the bias currents of each I-pot [35] were sent through this port. The outputs of the Caviar Board were sent to an AER bus. This bus was connected to a Mapper. The Mapper was a programmable device that was used to filter or remove the activity of some pixels for some specific measurements (bandwidth and latency characterization). The output bus of the Mapper was connected the board USB2AER [52], which sends the AER data from the bus to one of the USB computer ports. This information was processed by a Java program [47] that allows to see real time images. The USB2AER board was specially useful for real-time monitoring. The input bus to this board was replicated and sent to a Datalogger. This board has an internal memory that can store the data generated by 524,000 events and was used to save efficiently on the PC the AER information transmitted from the AER bus. To generate programable stimuli, a monitor can be placed over the retina visual field. The stimuli can be generated with a Matlab routine.

The nominal bias settings to test the retina were \(V_{\text{ref}} = 1.5V \), \(V_g = 600mV \), \(V_{\text{cas}} = 1.8V \), \(V_{b_{\text{pn}}} = 2V \), \(I_{\text{bn}} = 100nA \), \(I_{\text{bldc}} = 100nA \), \(I_{\text{brf}} = 10nA \) and \(I_{b_{\text{nn}}} = 200nA \). As we will discuss in section 5.4.4, the bias current \(I_{b_{\text{nn}}} \) can be adjusted to control the pixels bandwidth and the amplifiers power consumption.

5.4.1 Uniformity of Response

One important feature of imager sensors is the FPN that characterizes the uniformity of the response. In our particular case, we were interested in knowing how was the pixel contrast threshold variation, \(\theta_{ev} \), to generate one event. Ideally, all the pixels should generate the same number of events when they are stimulated with the same stimulus. For one individual pixel, we can define the temporal contrast as

\[
\theta = 2 \cdot \frac{I(t + \Delta t) - I(t)}{I(t) + I(t + \Delta t)}
\]

(5.7)

Table 5.1: Chip Specifications.

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology</td>
<td>CMOS 0.35µm 4M 2P</td>
</tr>
<tr>
<td>Power supply</td>
<td>3.3V</td>
</tr>
<tr>
<td>Chip size</td>
<td>5.54 x 5.69 mm²</td>
</tr>
<tr>
<td>Array size</td>
<td>128 x 128</td>
</tr>
<tr>
<td>Pixel size</td>
<td>35.7 x 35.5 µm²</td>
</tr>
<tr>
<td>Fill factor</td>
<td>8%</td>
</tr>
<tr>
<td>Photodiode quantum efficiency</td>
<td>0.34 @ 450nm</td>
</tr>
<tr>
<td>Pixel complexity</td>
<td>58 transistors + 3 caps</td>
</tr>
<tr>
<td>Current consumption</td>
<td>44mA @ 10keps</td>
</tr>
</tbody>
</table>
Chapter 5: The AER Temporal Contrast Vision Sensor

Fig 5.5: Microphotograph of 5.538mm x 5.689mm die, and zoom out of 35.7μm x 35.5μm pixel (layout) indicating the location of its main components.
Fig 5.6: Experimental setup and photo of the retina and main boards used to test the imager.
Where $I(t)$ is pixel photo current value at one instant, t. If both photo currents are very similar, $I(t) \approx I(t + \Delta t)$, then we can approximate the temporal contrast by

$$
\theta \approx \frac{I(t + \Delta t) - I(t)}{I(t)} = \frac{\Delta t}{I(t)}
$$

(5.8)

where $\Delta t = I(t + \Delta t) - I(t)$.

From eq. (5.1), we know that a given change in the pixel photo current will produce the following change in V_{out}

$$
\Delta V_{\text{out}} = n U_{\text{t}} \ln \left(\frac{I(t + \Delta t)}{I(t)} \right)
$$

(5.9)

Combining eq. (5.5) and eq. (5.9), and knowing that the total gain at the output of the differentiator is $G_t = G_1 G_2 G_3$ (where G_1, G_2 and G_3 are the gains of the amplifiers and differentiator, respectively), we can express the change at the differencing circuit output ΔV_{diff} as

$$
\Delta V_{\text{diff}} = -G_t U_{\text{t}} n \ln \left(\frac{I(t + \Delta t)}{I(t)} \right) = -G_t U_{\text{t}} n \ln (\theta + 1)
$$

(5.10)

And usually $\theta \ll 1$, so ΔV_{diff} is approximately given by the following expression

$$
\Delta V_{\text{diff}} = -G_t U_{\text{t}} n \theta
$$

(5.11)

After the differencing circuit, there are two comparators that generate positive or negative events (see Figure 5.3(a)) depending on the value of V_{diff} and the positive and negative thresholds, V_{low} and V_{high}. If we set symmetric thresholds, one positive or negative event will be generated when there is a change in V_{diff}, $\Delta V_{\text{diff, ev}}$, and

$$
-\Delta V_{\text{diff, ev}} = V_{\text{high}} - V_{\text{ref}} \quad \text{for a positive event}
$$

(5.12)

$$
-\Delta V_{\text{diff, ev}} = V_{\text{ref}} - V_{\text{low}} \quad \text{for a negative event}
$$

(5.13)

Combining eq. (5.12), (5.13) and (5.11), we can obtain an expression for the minimum temporal contrast, θ_{ev}, necessary to produce one single event (either positive or negative)

$$
\theta_{ev} = \pm \frac{\Delta V_{\text{diff, ev}}}{n G_t U_{\text{t}}}
$$

(5.14)
And when there is a temporal change in the photo current, if the output voltage variation is higher than $\Delta V_{diff\ ev}$, the pixel will generate $N = \frac{\Delta V_{diff\ ev}}{\Delta V_{diff\ ev}}$ events. Hence,

$$\theta_{ev} = \pm \frac{\Delta V_{diff\ ev}}{nG_jU_t} = \frac{\ln((I(\Delta t + t))/I(t))}{N}$$

(5.15)

In order to characterize the FPN, we stimulated the retina pixels with a black bar with linear gradient edges that was moving at constant speed through the visual field of the sensor. The bar was passed through the visual field 30 times. After this, the average number of events generated by each pixel, \bar{N}, was recorded. Ideally, if all the pixels are stimulated with the same stimulus, they should spike the same number of times. The goal of the experiment was to quantify the pixel deviation. The effect of the refractory period was reduced to the minimum. The experiment was also repeated for different positive and negative symmetric thresholds, $|\Delta V_{diff\ ev}| = [0.2, 0.24, 0.33, 0.33, 0.41, 0.46, 0.51]V$. The stimulus was generated with a LCD monitor. Its contrast and speed was controlled with a computer program. The number of events does not depend on the speed of the stimulus. It only depends on its contrast. In our particular case, the ratio between the photo currents measured at the brightest and the darkest grey levels of the stimulus was $I_{bright}/I_{dark} \approx 4$. Let us define the log contrast as

$$C = \ln\left(\frac{I_{bright}}{I_{dark}}\right)$$

(5.16)

Therefore, an approximation for the contrast event threshold of eq. (5.15) is

$$\theta_{ev} = \frac{C}{\bar{N}}$$

(5.17)

Figure 5.7 shows the histograms with the average number of positive and negative events generated for each pixel of the retina. These values of the contrast event thresholds were calculated using eq. (5.17) and are indicated on each graph. For the highest threshold, there is an average of 3.6 positive and 3.6 negative events per positive and negative edge. For the lowest threshold, there is an average of 16.1 events per pixel (either positive or negative events). For lower thresholds, the average number of events and the deviation is higher.

5.4.2 Pixel Gain Measurements

From the experimental results of Figure 5.7, we can obtain the average gain of each pixel. Combining eq. (5.15) and eq. (5.11), we can express the total gain as

$$G_t = \frac{\bar{N} \cdot \Delta V_{diff\ ev}}{n \cdot U_t \cdot C}$$

(5.18)
Fig 5.7: Pixel histograms with the average number of events recorded per pass of the stimulus bar for 30 repetitions. The experiment was also repeated for different values of the event threshold.
Figure 5.8 displays the average measured individual pixel gain values and the number of pixels which have each gain value. The estimated gain values are plotted for different values of the voltage thresholds. For all the pixels, the average gain value is \(G_t \approx 65 \). Ideally speaking, gain should not depend on the contrast threshold. We can see that for the highest threshold \(|\Delta V_{\text{diff, ev}}| = 0.51V \), the total gain is approximately 55. The reason is that there are pixels that do not spike sometimes when the stimulus pass through the visual field and the threshold is too high. When the threshold is too low, \(|\Delta V_{\text{diff, ev}}| = 0.2V \), outliers that spike with very high frequency appear. For this reason, the total gain is slightly higher \((G_t \approx 70) \). For the rest of the threshold values, the average gain is quite similar, \(G_t \approx 65 \).

5.4.3 Contrast Threshold Deviation

Let us know study the deviation in the contrast threshold from the measurements shown in Figure 5.7. If there is a variation of \(\Delta V_{\text{diff}} \) higher than the contrast threshold, from equations (5.10), (5.12) and (5.13), we can obtain the number of spikes that the pixel will generate

\[
N = \frac{\Delta V_{\text{diff}}}{\Delta V_{\text{diff, ev}}} = \frac{\ln(\theta + 1)}{\theta_{ev}}
\]

(5.19)

Because of pixel mismatch not all generate the same number of events, but there will be a statistical distribution where each pixel will generate a number of events given by

\[
N + \Delta N = \frac{\ln(\theta + 1)}{\theta_{ev} + \Delta \theta_{ev}} \approx \frac{\ln(\theta + 1)\left(1 - \frac{\Delta \theta_{ev}}{\theta_{ev}}\right)}{\theta_{ev}} = N\left(1 - \frac{\Delta \theta_{ev}}{\theta_{ev}}\right)
\]

(5.20)

Consequently,

\[
\frac{\Delta N}{N} = \frac{\Delta \theta_{ev}}{\theta_{ev}}
\]

(5.21)

and

\[
\sigma_{\theta_{ev}} = \frac{\theta_{ev}}{N} \sigma(\Delta N)
\]

(5.22)

Top panel of Figure 5.9 shows the standard deviation of measured contrast threshold in % (computed from eq. (5.22) and the measurements of Figure 5.7) plotted as a function of contrast threshold. At the bottom panel, we have plotted \(\frac{\sigma_{\theta_{ev}}}{N} \) as a function of contrast threshold. The minimum experimental mismatch deviation (FPN) was about 2.8%.
Fig 5.8: (a) Distributions in the pixels gains obtained from the measurements of Figure 5.7 and eq. (5.18). (b) Average gain values for each voltage threshold.
The main sources of mismatch are the transistor threshold voltage, ΔV_{diff}, of comparators and the interpixel mismatch of the gain, G_t. If we assume independent statistical distributions, the contrast threshold can be expressed as

$$\sigma_{\theta_{ev}}^2 = \sigma_{\theta_{ev}}^2|_{G_t} + \sigma_{\theta_{ev}}^2|_{\Delta V_{\text{diff}}} \quad (5.23)$$

And using the chain rule, we can obtain equations for the two sources of mismatch from eq. (5.15)

$$\sigma_{\theta_{ev}}|_{G_t} = \frac{\Delta V_{\text{diff}}}{nU_tG_t} = \frac{\sigma_{G_t}}{G_t}\theta_{ev} \quad (5.24)$$

$$\sigma_{\theta_{ev}}|_{\Delta V_{\text{diff}}} = \frac{\sigma_{\Delta V_{\text{diff}}}}{nU_tG_t} \quad (5.25)$$

Fig 5.9: Top panel shows the contrast deviation expressed in % as a function of the contrast deviation. Bottom panel shows the ration between the contrast deviation and the average number of events (also in %).

The main sources of mismatch are the transistor threshold voltage, ΔV_{diff}, of comparators and the interpixel mismatch of the gain, G_t. If we assume independent statistical distributions, the contrast threshold can be expressed as

$$\sigma_{\theta_{ev}}^2 = \sigma_{\theta_{ev}}^2|_{G_t} + \sigma_{\theta_{ev}}^2|_{\Delta V_{\text{diff}}} \quad (5.23)$$

And using the chain rule, we can obtain equations for the two sources of mismatch from eq. (5.15)

$$\sigma_{\theta_{ev}}|_{G_t} = \frac{\Delta V_{\text{diff}}}{nU_tG_t} = \frac{\sigma_{G_t}}{G_t}\theta_{ev} \quad (5.24)$$

$$\sigma_{\theta_{ev}}|_{\Delta V_{\text{diff}}} = \frac{\sigma_{\Delta V_{\text{diff}}}}{nU_tG_t} \quad (5.25)$$
The total threshold deviation can be expressed as follows:

$$\sigma_0^2 = \theta_{ev}^2 \sigma_A^2 + \sigma_o^2$$, with $$\sigma_A = \frac{\sigma_{\theta_{ev}} G_t}{G_i}$$ and $$\sigma_o = \frac{\sigma_{\Delta V_{diff}}}{n U_t G_i}$$ (5.26)

In Figure 5.10, we have plotted the probability density function of the contrast threshold to produce one output event, $$\theta_{ev}$$, assuming that has a Gaussian distribution. Let us denote as $$\theta_{evn}$$ the medium value of $$\theta_{ev}$$ for all the retina pixels. Looking at Figure 5.10, if we want the 99% of the pixels to spike when there is a contrast stimulus, the minimum detectable contrast will be

$$\theta_{min} = \theta_{evn} + 3\sigma_{\theta_{ev}} = 6\sigma_{\theta_{ev}}$$ (5.27)

We have to highlight that if there were pixels with a value of $$\theta_{ev} = 0$$, they would be always spiking, even if there is no contrast. Therefore, the minimum detectable threshold will be

$$\theta_{ev} = 3\sigma_{\theta_{ev}}$$ (5.28)

From equations (5.27) and (5.28), we can state that,

$$\theta_{min} = 2\theta_{ev}$$ (5.29)
And substituting equations (5.27) and (5.29) in (5.26), we can deduce the value of the minimum detectable contrast is

\[
\theta_{\text{min}} = 2\theta_{ev} = \frac{2\sigma_o}{\sqrt{1 - \frac{\sigma_e^2}{\sigma_A^2}}} \quad (5.30)
\]

In our particular case, we can compute the values of \(\sigma_o\) and \(\sigma_{G_i}\) from the experimental results of Figure 5.9 and substitute them in eq (5.26) to obtain the minimum detectable contrast \(\theta_{\text{min}}\). Note that in (5.26), for low values of \(\theta_{ev}\), \(\sigma_{\theta_{ev}} \approx \sigma_o\), because mismatch at the offset of comparators is the main source of mismatch. Therefore, \(\sigma_{\theta_{ev}}\) would be approximately equals to the minimum value of the curve at top panel of Figure 5.8. For higher values of \(\theta_{ev}\), \(\sigma_{\theta_{ev}} \approx \theta_{ev}\sigma_A\). Thus, \(\sigma_{\theta_{ev}}\) is approximately the slope of the curve at top panel of Figure 5.8. In this case, amplifiers gain is the main source of mismatch. Looking at Figure 5.8, \(\sigma_A \approx 0.16\) and \(\sigma_o \approx 0.02\). Therefore, the minimum contrast that the 99% of the pixels can detect is

\[
\theta_{\text{min}} = \frac{2\sigma_o}{\sqrt{1 - \frac{\sigma_e^2}{\sigma_A^2}}} \approx 13.5\% \quad (5.31)
\]

And the comparators offset is given by

\[
\sigma_{V_{offset}} = \sigma(\Delta V_{\text{diff}}) = G_i U_i n \sigma_{\theta_{ev}} \bigg|_{\sigma_{G_i} = 0} = G_i U_i n \sigma_o = 30mV \quad (5.32)
\]

According to eq. (5.27), \(\Delta V_{\text{diff}}\) has to satisfy \(|\Delta V_{\text{diff}}| > 6 \cdot 30 = 180mV\). On the contrary, some pixels will be always spiking. Experimentally, we could only set values of \(|\Delta V_{\text{diff}}|\) above 0.2V. For lower values of voltage thresholds, the event rate was too high (there were pixels spiking all the time with \(\theta_{ev} = 0\)) and the arbiter was not able to send out all the events properly.

5.4.4 Bandwidth Measurements

One of the more impressive features of the sensor is the pixel bandwidth. If we calculate the transfer functions of the main subsystems that compound the pixel (photoreceptor, amplifiers and differencing circuit), we can understand the dynamic response of retina pixels. Let us study all these blocks separately to analyze their influence on the dynamic response and obtain their transfer functions. The overall transfer function will be equal to the product of these individual transfer functions.

As we will show, the photoreceptor limits the pixel bandwidth. In Figure 5.11(a), the photoreceptor and its main parasitic capacitances are shown. If we calculate the transfer function between the input and output nodes (\(V_{in}\) and \(V_{out}\)), taking into account the main parasitic capaci-
Fig 5.11: Schematics of the main pixel blocks used to calculate the pixel transfer function. The main parasitic capacitances have been highlighted in each schematic. (a) Photoreceptor, (b) Amplifiers, and (c) Differencing circuit with circuitry detail including the amplifier and its main parasitic capacitances.
tances, we obtain a second order low-pass filter with a transfer function given by the following expression:

\[
H_1(s) = \frac{g_{m_p}g_{m_{cas}}}{C_1 s^2 + g_{m_p} C_2 s + g_{m_{cas}} g_{m_p}} = \frac{g_{m_{cas}} g_{m_p}}{C_1 C_d} \cdot \frac{1}{s^2 + \frac{s}{C_1 C_d} \frac{g_{m_p} C_2}{C_1 C_d} s + \frac{g_{m_p} g_{m_{cas}}}{C_1 C_d}},
\]

(5.33)

with
\[
C_1 = C_{g_{s_p}} + C_{g_{d_{bp}}} + C_{g_{d_{cas}}}
\]

(5.34)

and
\[
C_2 = C_{g_{s_{cas}}} + C_{d_{s_a}} + C_d
\]

(5.35)

If we calculate the poles of eq. (5.33),
\[
s_{12} = \frac{-g_{m_p} C_2}{2 C_1 C_d} \pm \frac{1}{2} \sqrt{\frac{g_{m_p} C_2^2}{4 C_1 C_d} - 4 g_{m_p} g_{m_{cas}} C_1 C_d}
\]

(5.36)

Under typical operation conditions, \(g_{m_p} < g_{m_{cas}}\) because transistor \(M_g\) operates in weak inversion and transistor \(M_{cas}\) operates in strong inversion. Hence, \(g_{m_p}^2 C_2^2 < 4 g_{m_p} g_{m_{cas}} C_1 C_d\) and poles are complex conjugates. However, there might be situations were poles were real number, depending of the chip illumination and bias settings. A generic second-order low-pass filter with complex conjugates poles can be expressed as,

\[
H(s) = \frac{k}{s^2 + \frac{w_o^2}{Q} s + w_o^2}
\]

(5.37)

We can obtain the filter cut-off frequency, assuming complex poles,
\[
w_o = \sqrt{\frac{g_{m_{cas}} g_{m_p}}{C_d C_1}}
\]

(5.38)

Studying eq. (5.38), we can state that pixel bandwidth depends of transistor \(M_m\) conductance. Transistor \(M_m\) works in weak inversion. Conductance changes with illumination because, \(g_{m_p} \approx \frac{I_{ph}}{U_T}\). For this reason, pixel bandwidth is proportional to illumination. For low luminance levels, \(g_{m_p}\) has low values and pixel bandwidth is lower. We also have to highlight that \(C_d\), the photo diode parasitic capacitance has a higher value than other parasitic capacitances. For this two reasons, this stage limits pixel bandwidth. Figure 5.12 displays the bode diagram of the photore-
Fig 5.12: Bode diagram of the photoreceptor transfer function. It is shown how illumination affects pixel bandwidth.

In the amplification stage, we find two identical amplifiers. In Figure 5.11(b), there we can see the schematics of one of them. The main parasitic capacitances are indicated in the figure. The current source of Figure 5.2 has been replaced by transistor \(M_2 \) in Figure 5.11(b). This transistor is part of a current mirror that feeds the amplifier. The transfer function of each amplifier is approximately given by,

\[
H(s) = -\frac{s^2 + \frac{C_{gs1}g_{m4}}{C_{gs1}C_{gd4}}s + \frac{g_{m4}g_{m5}}{C_{gs1}C_{gd4}}}{s^2 + \frac{g_{m3}C_3 + g_{m4}C_{gd4} + g_{m1}C_4 + g_{m3}g_{m5}}{C_5^2}}
\]

With \(C_5^2 = C_{gd4}(C_1 + C_{gs1}) + C_2(C_{gs1} + C_{gd4} + C_1) \),

\[
(5.39)
\]

\[
(5.40)
\]
Chapter 5: The AER Temporal Contrast Vision Sensor

Let us denote, the poles of eq. (5.39) are equal to the following expression

\[s_{12} = -\frac{\tau}{C_5^3} \pm \frac{1}{2C_5^3} \cdot \sqrt{\tau^2 - 4g_{m_3}g_{m_1}C_5^2} \] (5.45)

Assuming that \(g_{m_1} \approx g_{m_3} \approx g_{m_4} \), poles are complex conjugates because \(\tau^2 < 4g_{m_3}g_{m_1}C_5^2 \) (\(C_5 \) is the dominant capacitance). Figure 5.13 shows the bode diagram of the transfer function of each amplifier. It is approximately a low-pass filter. Amplifiers have a constant gain within the band pass. For higher frequencies, input signals are attenuated. In this case, the cut-off frequency is

\[f_{02} = \frac{\tau}{2\pi C_5} \]

\[f_{01} = \frac{\tau}{2\pi C_5^3} \]

Fig 5.13: Bode diagram of amplifiers transfer function.
Chapter 5: The AER Temporal Contrast Vision Sensor

Amplifiers have been designed to have a bandwidth higher than the photoreceptor stage, \(w_{o_2} > w_{o_1} \). \(C_3^2 \) in eq. (5.46) is lower than the product of capacitances \(C_3^2 \) in eq. (5.38). Numerator of eq. (5.46) is also lower than numerator of eq. (5.38) because amplifiers transistors \(M_1 \) and \(M_3 \) work in strong inversion. Therefore, we can assume that this stage only amplifies the input signal coming from the photoreceptor.

Figure 5.11(c) displays the differencing circuit and its main parasitic capacitances. The amplifier symbol of Figure 5.1 has been replaced by its schematics. In this case, the transfer function is given by the following expression

\[
H_3(s) = \frac{C_3}{C_4} \frac{s^2 - \frac{g_{m_1} g_{m_3}}{C_3} s + \frac{g_{m_1} g_{m_3}}{C_2 C_3}}{s^2 + \frac{g_{m_1} g_{m_3}}{C_4} s + \frac{g_{m_1} g_{m_3}}{C_1 C_4}} \approx \frac{C_1}{C_2} \frac{s + \frac{g_{m_1}}{C_3}}{s - \frac{g_{m_1}}{C_4}}
\]

(5.47)

\(C_1 \) and \(C_2 \) are the external capacitors of the differencing circuit. The ratio between them is equal to the gain of this stage. In our case, \(G_3 = \frac{C_1}{C_3} \approx 5 \) and \(C_3 > C_4 \). Hence, \(\frac{g_{m_1}}{C_3} < \frac{g_{m_1}}{C_4} \). In Figure 5.14, we can see the bode diagram of its transfer function. The system works as a differentiator from DC to frequencies higher than \(w_{o_1} \). This stage does not limit the pixel bandwidth and also introduces additional gain.

In conclusion, the logarithmic photoreceptor limits pixel bandwidth. This depends on illumination because the conductance of transistor \(M_p \) in Figure 5.1 is proportional to illumination, \(g_{m_p} = \frac{I_{ph}}{U_T} \). We can consider pixels as a second-order systems. The total transfer function is given by the product of the three transfer functions, \(H(s) = H_1(s)H_2(s)H_3(s) \). It can be approximated as \(H(s) \approx G_1 G_2 G_3 H_1(s) = G_t H_1(s) \), where \(G_1 \) and \(G_2 \) are the amplifiers gain and \(G_3 \) is the differencing circuit gain.

To take the bandwidth measurements, a group of pixels of the center of the matrix were stimulated with a LED. The diode was modulated with a sinusoidal signal (see Figure 5.15). The signal has an offset level to keep the LED always ON, so \(V_{offset} \) \(A > V_T \). We were varying the modulation frequency and counting the number of positive and negative events generate per stimulus cycle during a scan period of 20s. In the band pass, this ratio remains constant. For frequencies higher than the cut-off frequency, this ratio becomes smaller. In Figure 5.16, there are some transfer functions of several pixels. The x-axis represents the stimulus frequency and the y-axis...
the number of events (positive and negative) per cycle of the sinewave. Measurements were taken at 1Klux with indoor light. Some pixels even exhibit a small resonant peak about 2KHz. There is a mismatch between the pixels bandwidth. All the pixel transfer functions have a bandwidth higher than 5KHz. Some pixels display a bandwidth even higher than 10KHz. The average pixel bandwidth was about 8KHz. This gives an idea about how fast can be the temporal changes that the retina can detect. We set symmetric positive and negative thresholds to take the measurements.

\[
V_{in}(t) = V_{offset} + A \cdot \sin(2\pi ft)
\]
Figure 5.17 depicts how the pixel bandwidth depends on illumination. As we explained previously, pixel bandwidth is proportional to photo current when transistor M_p is working in weak inversion. In Figure 5.17, initially, illumination was 1 $Klux$ (for higher values of illumination, the shape of the pixel transfer functions does not change significantly and pixel bandwidth remains constant) and pixel bandwidth was about 6 KHz. Then, the event transfer function was measured several times by using neutral density filters to decrease the illumination level. Bandwidth is proportional to illumination. For low illumination levels (10 lux), the pixel still has a bandwidth of 300 Hz that is enough to detect very quick changes of illumination in the scene. In Figure 5.17, top panel shows experimental event transfer functions for different illumination levels. Pixels have approximately a first-order response. Fitting measured data with first-order transfer functions, we achieve a good matching for all the illumination values. We have plotted in red the first-order transfer functions that fit the data of the curves measured with lowest and highest illumination levels. For the rest of the curves, there is also a good matching with first-order transfer functions. Bottom panel displays how pixel bandwidth depends on illumination. We have plotted pixel bandwidth as a function of illumination. The linear fitting of the measurements is also displayed. For

Fig 5.16: Several event transfer functions obtained when a group of pixel of the center of the retina were stimulated with a LED, as is shown in Figure 5.15.
illumination levels higher than 1 Klux, pixel bandwidth remains constant and does not change significantly.

It is possible to exert some control over the pixels bandwidth and the power consumption. Obviously, the more bandwidth the more consumption. For some applications, it is not necessary to have a pixel bandwidth higher than 1 KHz. Figure 5.18 illustrates how the pixel bandwidth changes when we vary the bias current I_{bn1}, that controls the gain of the amplifiers. For bias values higher than 400 nA, pixel bandwidth remains constant. For a value of $I_{bn1} = 80 nA$, we still have a pixel bandwidth of 800 Hz.

It is possible to control the bandwidth varying other parameters. For example, varying V_g or V_{bp1} in the photoreptor. However, it is desirable to keep constant these bias and control the power.
consumption and the pixel bandwidth varying the gain of the amplifiers. Its amplifiers work in saturation region and chip consumption can be reduced significantly by varying amplifiers bias currents. Bias settings at the photoreceptor has a more restrictive tuning range and bad tuning of them could affect the pixel response.

In order to characterize the pixel response to very low stimulus frequencies, we repeated the bandwidth results of Figure 5.17 to determine the pixel bandwidth. In this case, we increased the scan period to 240s to assure that at least a few events per cycle were generated during the scan period. The leakage current of the reset transistor in the differencing circuit generates positive events with a frequency of $46mHz$. These events have to been take into account when we study the pixel response to very low frequencies. Figure 5.19 shows the average number of positive and negative events generated by one pixel per stimulus cycle. We have also plotted a third curve showing how the leakage current of the reset transistor affects the measurements of positive events. The effective number of positive events per cycle is equal to the difference between the measured events per cycle and the number of positive events generated due to the leakage current during the scan period. Looking at Figure 5.19, we can state that the retina can detect changes of

Fig 5.18: Bandwidth control varying the bias current I_{bn1}.

![Bandwidth Control Graph](image-url)
illumination of 10mHz. According to the results of Figure 5.17, the pixel frequency range of operation is approximately $[10^{-2}, 7 \cdot 10^3] \text{Hz}$.

5.4.5 Latency Characterization

As we explained in section 4.5.6, latency is the amount of time that it takes from the occurrence of a illumination change at the photo diode and the output of an address event. This imager is specially useful for high speed applications as it could be easily used as part of a feedback controller. Latency can be considered as effective measurement of the pixel bandwidth. It also depends on the illumination level. For low values of illumination, it is reciprocal with illumination. Figure 5.21 displays the latency measurements of one individual pixel under different illumination conditions. Error bars indicate the deviation (jitter) between different measurements. Under standard operation conditions, latency is always below 1ms. The lowest experimental value of the latency was $3.67 \mu\text{s}$ at 25Klux. Latency measurements were taken under nominal bias settings with $I_{bn_1} = 200nA$ and $|\Delta V_{diff}| = 0.2V$. If we set low thresholds, we will reduce the latency period.

![Pixel behaviour at very low stimulus frequencies](image-url)
To take latency results, we use a LED (as is shown in Figure 5.15). In this case, the diode was initially OFF. Then, we illuminated it using a step signal. The latency was the delay between the step signal and the first RQST of the pixel under test in response to the luminance change. To avoid confusions with the request signals sent out by other pixels, a Mapper device (connected as is indicated in Figure 5.6) was programed to remove all the Request signals from other pixels. The delay introduced by the Mapper was known (~270ns). Latency was measured with an oscilloscope working on single mode. Figure 5.21 shows the two recorded signals with the oscilloscope (step stimulus and Request signal) and the delay (latency) between them. The experiment was repeated 30 times to determine the pixel deviation (jitter).

5.4.6 Dynamic Range

We define the dynamic range of the sensor as the ratio of the lowest to the highest level of illumination at which the imager can detect contrast stimuli. The logarithmic sensor compresses the dynamic range and allows to work under very diverse illumination conditions. We tested the
imager successfully with very illumination ratios under 1lux. It was also able to work under very bright lighting conditions up to 50Klux. The measured dynamic range was higher than 100dB. Photo diode dark current limits the lower end of the range. Its value was at room temperature.

Figure 5.22 shows two different snapshots. The first one is an image taken under very low illumination conditions (<1 lux). The second one is a snapshot of an image with two regions with very different levels of illumination (intra-scene variations). The illumination ratio of the bright and the dark region was 500. The proposed amplifiers AGC mechanism works well under very different illumination conditions. We achieved good results in very different natural environments. Its main goal is just to keep the DC gain constant, independently of the global luminance level.

Fig 5.21: Recorded signals used to measure the pixel latency. The delay between the step stimulus and the first pixel request is the latency. Delay was measured with an oscilloscope.
5.4.7 Example Data and High Speed Applications

Figure 5.23 displays some scenes taken with the temporal contrast sensor. All of them and the data of Figure 5.24 and Figure 5.26 were captured with indoor light and nominal bias settings with $I_{bn_1} = 200 nA$.

The sensor is specially suitable for high speed applications. According with the experimental results of Figure 5.16, the imager can detect temporal changes in illumination with a frequency higher than 10KHz. It is difficult to generate such fast stimuli with mechanical devices. Figure 5.24 shows the events generated during a period of time by a rotating white dot at 400Hz ($24,000 \text{rpm}$). It was painted on the black blade of an electrical fan. The retina easily detected it. Unfortunately, it was not possible for us to work at faster speed with mechanical devices. In order
to generate faster and controlled stimuli, we used an analog oscilloscope working on XY mode. Its inputs were two signals with a controlled delay between them. Thus, a bright point rotating at controlled speed could be generated and seen in the phosphor oscilloscope screen.

Firstly, we stimulated the imager with bright points moving through an elliptical trajectory. The oscilloscope inputs were two sinusoidal signals with a delay between them. However, we found out that the phosphor time response could be a limitation to generate high speed stimuli. Emitted light by the phosphor screen did not go out immediately. There was a time response and it could occur that one point would be always illuminated if the stimulus was very fast. Using spiral shape paths, the effect of phosphor persistence was very attenuated because the trajectory of the stimulus was longer.

Figure 5.25 shows the input signals to each oscilloscope channel. Two sine wave signals were modulated with an exponential signal. The resulting XY signal had a spiral shape. By this way, the number of times that one individual screen point was turned ON was reduced approximately 5 times. Stimulus speed could be controlled varying the sine wave frequencies. The two signals of Figure 5.25 were repeated periodically with a signal generator.
Figure 5.26 displays some recorded data with the Datalogger when we vary the speed of the rotating dot. Sine wave frequencies are indicated on each graph. The average number of events is also highlighted. The imager can detect stimuli frequencies up to 7KHz. For stimuli frequencies higher than 1KHz, negative events (red points) are not easily detected. The reason is that negative

Figure 5.25: (a) Input signals to each oscilloscope channel. Both of them were repeated periodically. The resulting XY signal, (b), was a bright point moving through a spiral trajectory. We varied frequency values to find out how fast was able the sensor to detect temporal contrast.

(a)

(b)
Fig 5.26: Recording events during a XY signal period. The stimulus was a dot moving through a trajectory with spiral shape as is shown in Figure 5.25. Results are shown for different frequencies of the input signal. Event rate is also highlighted.
Chapter 5: The AER Temporal Contrast Vision Sensor

temporal contrast is lower than positive contrast. This can be understood with the help of Figure 5.8. In one region of the retina, we counted the number of positive and negative events generated by the pixels of such region during time steps of 1 ms. We can notice that positive events (transition from dark to bright illumination) have a different time response than negative ones (transition from bright to dark illumination). In fact, pixels are generating negative events all the time if the stimulus frequency is higher than 500 Hz. This suggests, that phosphor light is never completely OFF is the stimulus is very fast. In Figure 5.27, frequency was 500 Hz. Obviously, when the frequency is increased, it is more difficult to detect negative events because the decay time response is relatively low. Positive temporal contrast is higher and positive events are generated firstly.

Although this limitation, we can see that our sensor was able to detect rotating dots at frequencies of 10 KHz (600,000 rpm). That is something that we could expect from the results of Figure 5.16. All the pixels do not have the same bandwidth. For this reason, some pixels stop spiking for lower frequencies than another ones.

If positive and negative thresholds are very low, output event rate can be very high and the arbiter system could not send out all the events. It is desirable to work with events rates under 1 Meps to avoid information loss. If we look at the events rates of Figure 5.26, we can notice that when stimulus frequency is lower than pixels bandwidth, the output rate is proportional to stimulus frequency. For stimuli frequencies higher than the cut off frequency, event rate starts to decay. For frequencies higher than 15 KHz, only the background ON events due to reset transistor leakage were measured.

5.4.8 Power Consumption

Chip power consumption has been characterized. Supply voltage was 3.3 V. Power consumption depends on static bias conditions and output rate. For this imager, it is dominated by the static bias conditions. The main drawback of using amplifiers is an increase of the standby consumption. In further designs, it could be reduced by using amplifiers operating in subthreshold region. Measured standby chip consumption was approximately 108 mW. This dissipated power includes...
the pixel reception stage, amplifiers, AGC block and I-Pots consumption. There is also a dynamic power consumption that depends on the output rate. This consumption includes the arbiter and the communication interface.

Typical bias settings were $V_{\text{ref}} = 1.5\,\text{V}$, $V_g = 600\,\text{mV}$, $V_{\text{cas}} = 1.8\,\text{V}$, $V_{bpn_1} = 2\,\text{V}$, $I_{bn} = 100\,\text{nA}$, $I_{bldc} = 100\,\text{nA}$, $I_{brf} = 10\,\text{nA}$ and $I_{bn_1} = 200\,\text{nA}$. Figure 5.28 shows the chip current consumption versus the output event rate. It can vary between 132-185mW. As can be seen, for a standard output event rate of 1Keps, total power consumption is 142mW.

5.5 Discussion

In this chapter, a new AER temporal contrast retina has been presented. Part of the work of this thesis was to test it. The new sensor is specially useful for high speed applications and shows some advantages over prior designs [9]. It uses amplification after the photoreceptor stage. By this way, we achieve more bandwidth, lower latency and better fill factor. The only drawback of amplification is more power consumption. In the future, consumption could be reduced using amplifiers in subthreshold region. Table 5.2 summarizes the imager main specifications. We could think that FPN would be worse in this design due to amplifiers gain mismatch. However, FPN

Fig 5.28: Chip total current consumption as a function of output event rate. Standby chip consumption was 108mW.
The experimental values are similar to the values of the sensor presented by Lichsteiner et al. in [9]. The ratio between pixel deviation and gain is similar (see comparative between different sensors in Table 1.1).

Finally, some examples of tracking of very fast stimulus (Figure 5.24 and Figure 5.26) have been shown.

<table>
<thead>
<tr>
<th>Functionality</th>
<th>Light to time restriction</th>
<th>Latency/Bandwidth</th>
<th>Dynamic Range</th>
<th>FPN</th>
<th>Fill Factor</th>
<th>Pixel Size (μm^2)</th>
<th>Fabrication Process</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temporal Contrast to Number of Events</td>
<td>NO</td>
<td>$3.6\mu\text{s} / 8\text{KHz}$</td>
<td>$>$100dB</td>
<td>2.8%</td>
<td>8%</td>
<td>35 x 35</td>
<td>0.35μm 2M 2P</td>
<td>132-185mW</td>
</tr>
</tbody>
</table>
CHAPTER 6

Conclusions

6.1 Previous Work

The aim of this thesis was to propose new AER imagers to detect either spatial and temporal contrast. Our first goal was to design a functional spatial contrast retina. Prior attempts to design such sensors were plagued with mismatch and had several drawbacks like bandwidth consumption, when there was no spatial contrast. We started our work, studying the sensor presented by Boahen [21]-[22]. After it, we decided to implement an improved version. To overcome the mismatch problem, we decided to add a new calibration system. The idea of calibration in AER systems was successfully implemented in prior designs [14]-[27]. For our particular necessities, we proposed a new calibration method with improved features.

The second main target was to test a new AER temporal contrast sensor designed in our group. Its main features were high speed and very low latency response. This sensor exploits some ideas previously presented by Leischteiner et al. in [10] and it is based on their sensor.

6.2 Achievements

In this thesis we have proposed new concepts that could be implemented in further AER designs. The first one is calibration. We decided to design a new calibration system specially suitable for large neuromorphic arrays. Its main advantage over prior calibration systems was the fact that calibration degrades gracefully when we scale bias currents or illumination level changes. The calibration system is specially useful because it only needs to be calibrated once. Calibration accuracy does not depend on illuminance strongly. Only digital registers (one for each bit of resolution) and 3 transistors have to be added to each pixel to implement the calibration procedure.

The second main achievement is the AER spatial contrast retina. It uses the calibration method mentioned above. The sensor has also a thresholding mechanism that allows to remove the residual mismatch after calibration. This mechanism is also useful to remove noise or inhibit the activity of positive or negative events. There are two independent channels to process positive or negative events. For some applications, it could be desirable to work with unsigned events. In these cases, the thresholding mechanism is an efficient method to inhibit completely the activity
Chapter 6: Conclusions

of positive or negative events. Moreover, the imager has an optional TFS (time-to-first spike) mode. It is implemented with a global reset mechanism. By adjusting the voltage of the refractory period, the number of spikes that one individual pixel generates can be controlled. If we set the refractory period to allow each pixel just spike once after the global reset signal becomes active, pixels with more activity (more relevant information) will spike first. Thus, if the scan period is chosen suitably, only relevant information will be transmitted. We can achieve a frame-based processing with some advantages of AER systems. Another important features of the imager are high sensitivity, low fixed pattern noise and low latency.

The second proposed sensor was a temporal contrast retina. Its main features were high speed, low latency and high dynamic range. This sensor has a similar topology to the one proposed by Lichsteiner et al. [10]. Its main advantages are the use of amplifiers after the photoreception stage. By this way, temporal contrast sensitivity and speed response can be improved. At the same time, fill factor was reduced because the gain at the capacitance divider of the differencing circuit could be decreased.

Extensively experimental results showing the validity of the new calibration systems and the main features of the two contrast retinas are provided. In chapter 2 a new circuit to generate biasing currents was presented. In chapter 3, the calibration circuitry is explained. In chapter 4 the spatial contrast retina is presented, and in chapter 5, the temporal contrast retina is showed.

6.3 Future Work

After studying the new circuits thoroughly, some improvements could be proposed for each one. Let us start with the calibration system.

As we explained in chapter 3, the calibration procedure is doing off-line, but it is perfectly possible to implement it on-chip with an extra controller (designed and synthesized via VHDL, for example), since it only requires to expose the chip to uniform illumination (one can simply remove the optics), compare the pixel frequencies (we would only need to count the number of times that each pixel spikes during a time interval) and compute an optimum set of calibration weights (find the calibration words that minimize the number of spikes of each pixel).

If we speak about the spatial contrast retina, the feasibility of the design has been shown. However, the retina resolution is rather low (32 x 32). It would be easy to design a new prototype with more resolution to take images with more quality. One of its drawbacks is the low fill factor. This could be easily improved in the future. The FPN of the circuit is very low (0.6%), so we could reduce the number of bits (3 or 4 bits registers would be enough to calibrate the chip) of the calibration system keeping a reasonable FPN value. Combining calibration and thresholding, better results can be achieved. Maybe, a more precise thresholding mechanism could be designed. It would only be necessary to increase the transistor size of the two transistors of the current mirror used to implement the thresholding method. Moreover, an extra controller to monitor the time-to-first spike mode could be added. It could control the duration of the frames, T_{frame}, or the number of spikes received before resetting the sensor.

With regard to the AER temporal contrast retina, we improved the sensor speed and time response with an amplification stage. We also reduced fill factor at the same time. However, amplifiers operate in strong inversion and their power consumption is higher in comparison to the rest of blocks that make up the pixel. In further designs, amplifiers could be design to work in weak inversion and reduce its power consumption. Pixel size is relatively low ($35\times35\mu m^2$). It could be reasonable to implement a temporal contrast retina with more resolution. An optional
time-to-first spike mode could be added to this sensor. Only 3 extra transistors per pixel and one output pin would be necessary to have available the optional operation mode.
APPENDIX A

Abbreviations and Mathematical Conventions

Throughout this thesis, we used the following abbreviations,

- **CCD** Charge-Coupled Device
- **VLSI** Very Large Scale Integration
- **Matlab** Mathematical Program of Mathworks, Inc
- **APS** Active Pixel Sensor
- **FPN** Fixed Pattern Noise
- \(I_{ph} \) Photo current
- \(V \) Voltage
- **AER** Address Event Representation
- **VHDL** Very High Speed Integrated Circuit Hardware Description Language

The following mathematical symbols are also used,

- \(f, w \) Temporal frequency
- \(T \) Temporal period
- \(| | \) Absolute value
w_{cal} Optimum calibration word

θ Temporal contrast

ΔV_{diff_ev} Voltage threshold to generate one event (either positive or negative)

ΔV_{diff} Voltage variation in response to temporal contrast stimulus

θ_{ev} Contrast threshold to generate one event (either positive or negative)

$\sigma_{\theta_{ev}}$ Deviation of the contrast threshold

θ_{min} Minimum detectable contrast.

G_i Gain of the amplification stage, i

τ System Time Response
Bibliography

BIBLIOGRAPHY

[37] M. Azadmehr, J. Abrahamsen, and P. Häfliger, “A Foveated AER Imager Chip”, in Proc. of

