
Trabajo de Fin de Máster
“Máster Universitario en Microelectrónica:

Diseño y Aplicaciones de Sistemas
Micro/Nanométricos”

Octopus image sensor with asynchronous

windowed readout

Escrito por Sergio Palomeque Mangut

Dirigido por Juan Antonio Leñero Bardallo

3 de julio de 2023

Acknowledgments

Para mı́ madre, para mı́ padre.

Quiero agradecer al profesor Juan Antonio Leñero Bardallo la supervisión de este trabajo. Juan
Antonio generosamente me dió la oportunidad de incorporarme a su equipo de investigación en el
IMSE, donde trabajo con comodidad en una ĺınea que me está apasionando. Espero poder seguir
investigando junto a él en sensores de imagen basados en eventos durante muchos años venideros.

Este trabajo ha sido posible gracias a mis compañeros del IMSE. Ellos sostienen la actividad
del centro, muchas veces sin el reconocimiento que merecen. Gracias a Pablo, a Valent́ın, a Rubén,
a Carlos ‘Senior’, a Roberto, a Rafa, a Carlos ‘Junior’, a Iván, a Laura y a Javi.

Y a mi hermano, David. Mi vida es más fácil porque sigo sus pasos.

i

ii

Contents

Acknowledgements i

List of Figures ix

List of Tables xi

Abstract, Motivation and Objectives xiii

Abstract, Motivations and Objectives xiii

1 Fundamentals of Octopus Image Sensors 1
1.1 Introduction . 1
1.2 Event-based image sensors . 2

1.2.1 Octopus sensor . 6
1.2.2 Address event representation (AER) . 9

2 Asynchronous Readout 11
2.1 Tenderness towards synchronous readout techniques 11
2.2 Arbiters . 13

2.2.1 Greedy arbiter . 15
2.2.2 Fair arbiter . 17

2.3 Our solution: windowed asynchronous readout . 19

3 Octopus Pixel 23
3.1 Introduction . 23
3.2 Two-stage comparator . 25

3.2.1 Differential pair with active load . 26
3.2.2 Common-source amplifier . 28
3.2.3 Characterization . 29
3.2.4 Design . 30

3.3 In-pixel handshake circuit . 37
3.3.1 Estimating the line impedance . 38

3.4 Layout . 42

4 AER Periphery 47
4.1 Sender interface . 48
4.2 Encoders . 49
4.3 Arbiter tree . 50

5 Expected Results and Future Work 55

Bibliography 57

iii

iv CONTENTS

List of Figures

1.1 Comparison between CCD and CMOS image sensors [5]. (a) CCDs transfer simul-
taneously the signal charges of its photoreceptor, as received, to the next CCD. A
fast shift register at the end of the lines sends them to an amplifier for external read-
out. (b) A CIS uses amplification in each pixel, converting the signal charge into a
voltage signal . Although CIS were more sensible to fixed-pattern noise (FPN), this
drawback has been eliminated. 2

1.2 Historical evolution of digital image sensors. Originally from [5], modified in this
work. 3

1.3 Silicon retina designed by Mahowald [16]. (a) Diagram of the silicon retina showing
the resistive network and a single pixel element. (b) Address event representation
(AER) scheme. Asynchronous neurons request control of the bus when they generate
action potentials and transmit their addresses. 4

1.4 Preliminary image deblurring results on high-speed scene, obtained combining Proph-
esee Metavision sensor and algorithms with Snapdragon platform. 5

1.5 Pulse-modulation imagers [28] These pixels transmit absolute intensity of incident
light through the timing of events in the comparator’s output. (a) Time-to-first
spike (TTFS) architecture, based on PWM. Brighter pixels spike sooner than darker
pixels. (b) Octopus pixel architecture, using PFM encoding. Larger photocurrents
are converted into higher frequencies. 7

1.6 Schematics and images from the original octopus sensor [29]. (a) Asynchronous
AER readout. A latch buffers the request from the pixel. The request signals are
arbitered in the arbiter trees, which select the first pixel that produced an event. The
encoders output the address of that selected pixel. (b) Pixel schematic, showing the
current-feedback event generator and the in-pixel handshake circuit. (c) Example
images with linear intensity (top) and log scale (bottom). 8

1.7 (a) Schematics of an octopus sensor as an AER sender implemented by Leñero [34].
The first stage provides buffering and signal control for requests and acknowledges
pixel arbitration. Requests are sent to an arbiter tree, which selects the winning
row or column through an acknowledge, which then selects a word from the encoder.
(b) Signal flow of the arbitration between rows and columns, and the AER point-
to-point link with a 4-phase handshaking protocol [38]. 10

2.1 (Left) A 4-phase, bundled-data communication. A sender is connected to a receiver
by data lines, a request line, and an acknowledge line. (Right) Its timing diagram.
When the request line is low, the data is to be considered invalid and liable to change
at any time. The sender usually waits for the acknowledge signal to remove the data
from the data bus. 14

v

vi LIST OF FIGURES

2.2 Block diagram of an asynchronous readout AER implementation for an event-based
image sensor with a resolution of L x H pixels in a grid arrangement. The row
and column interface can include pull-up elements for the wired ORs, buffers, and
latches, as well as control logic for handshake signals. The main limitation we face
when scaling pixel count is the size of the wired ORs. These column and row metal
lines get longer and have more pull-down transistors connected to them, causing
the capacitance of the lines to increase, degrading signal integrity and slowing the
readout process. In the arbiter trees, each line is actually formed by two wires: a
request and an acknowledge. There are ln(L) (or ln(H)) levels and L - 1 (or H - 1)
arbiters in each tree, in the case of square matrix dimensions. 15

2.3 Circuit implementation of a glitch free 2-way greedy arbiter [49]. The RS bistable
(req0 = S, req1 = R) and metastability filter form the core mutual exclusion element.
It exclusively acknowledges one of two incoming requests, only if its own outgoing
request is acknowledged. The glitch filter prevents a condition where the output
request switches logic briefly. The transistor count is 27. 16

2.4 Token movement in an arbiter tree to handle the requests from neurons. In a greedy
arbiter tree, neurons located near each other may form a greedy path because the
token does not need to reach to the top of the tree. A fair mechanism is needed to
ensure that requests from an arbiter are blocked until its parent’s acknowledge is
cleared. 17

2.5 Asymmetric Muller C-element, an essential component for understanding the fair
arbiter behavior. (a) Symbol of the circuit. (b) Transistor implementation. (c)
Truth table. 18

2.6 Asynchronous fair arbiter implemented by Fok and Boahen [47]. The RS bistable
with NOR gates implies the use of active-low logic for requests. A metastability
filter is implemented with two inverters at the output of the latch, with pull-down
source connected to the reciprocal request. The asymmetric C-element guarantees
that no greedy path is created. Transistor count is higher than for the greedy arbiter. 18

2.7 Image artifact occurs by the mismatch between event generation time and readout
time for high event rates [51]. 18

2.8 The two readout modes proposed in this work. The octopus sensor we designed
implements a switch to decouple event generation from transmission through a signal
called Window. (Left) The sparse readout mode is based on the works of Karen
Adam [53], and will enable us to scan the events of those pixels in the matrix that
are not receiving the attention of the periphery. (Right) The quanta image mode,
based on the sensor conceived by Fossum [55], will use the window to randomly
sample the Poisson process of the spikes produced in the matrix. 20

2.9 Results from the Matlab models developed by Méndez-Romero [54]. In the top, an
example bright image is used to evaluate the saturation in the AER channel and the
impact of quanta-based acquisition. In the bottom, a 3D representation of the spikes
in each pixel. In the original image, the most illuminated pixels have 55000 spikes,
whereas its darker parts have around 2000. Roberto used a linear transformation
that assigned spiking frequencies between the brightest and to the darkest pixel.
Then, he modeled saturation by comparing the sum of all spikes in the matrix with
the common saturation rate of the AER periphery. If the sum is bigger, he erased
spikes of the less illuminated pixels. Last, he modeled quanta acquisition by dividing
the original image in a cube of binary bit planes, each indicating whether the pixels
had spiked at least once, and randomly eliminated spikes of each plane. The number
of spikes is better distributed among all pixels. 21

LIST OF FIGURES vii

2.10 Results from a quanta-based post-processing using an image adquired by an octopus
sensor [55]. The original images were acquired using an octopus sensor, and are
formed by around 150.000 events each. After post-processing, using a window with
a uniform distribution and 0.7 average duty cycle to sample the spikes, the images
are still recognizable. The result is that each image can be represented with half the
events.For each one of the images, histograms and the applied tone mapping curves
are shown. 22

3.1 Pixel schematic and signal flow [30]. The incident light is encoded in the frequency
of VSPIKE. Spikes produce a self-reset in the comparator’s input. The circuit im-
plements an integrate-and-fire neuron model. The in-pixel handshake interface with
memory capacity implements the logic for arbitration between pixels and AER com-
munication. The window decouples spike generation from communication. Transis-
tor sizes (µm/µm): M1 = 0.24/0.34, M2 = 0.45/0.18, M3 = M4 = 0.24/0.18, M5 =
2/0.18, M6 = M7 = 1.6/0.18. Total transistor count: 37. C = 20 fF. Discharging
time of the capacitance due to current leakage: 336.77 µs. 24

3.2 (a) Transfer characteristic of a comparator considering finite static gain and offset
voltage (left) and hysteresis (right). (b) We use the two-stage comparator with
NMOS input. Transistor sizes (µm/µm): M1 = M2 = 0.67/1.1, M3 = M4 = 1.34/2.2,
M5 = M7 = 0.37/0.48, M6 = 0.3/0.6. 25

3.3 (a) Large-signal analysis of the first stage of the comparator, with the two signal
paths affecting the single-ended output. Note that Vin polarity respect to a 5-T OTA
depiction is reversed, as the second stage of the comparator inverts the output. (b)
The V +

in signal path can be studied as a NMOS common source amplifier. (c)
Influence of Vin in Vo1 and in the current of the right branch. 26

3.4 (a) Small-signal circuit of the comparator’s first stage. Although Vbot is a constant
DC reference, we include its AC component for the calculation procedure. (b)
Small-signal equivalent of a diode-connected PMOS. 27

3.5 (a) Small-signal equivalent circuit of the common-source amplifier. (b) High-frequency
model of the stage with Miller’s approximation. 29

3.6 Histogram and its corresponding probability distribution for the output voltage in
the offset Monte Carlo testbench, with Ibias equal to 50 nA. The output contains
the common-mode value Vbot = 1.5 V and the offset, which is represented by the
standard deviation value σ = 6.66 mV. 33

3.7 Magnitude and phase in a corner AC analysis of the open-loop comparator, without
the reset feedback. For nominal values the DC gain is 66.78 dB and the pole is
located at 47.11 kHz. We define the process corners at -40 ºC and 85 ºC for fast-fast
(FF), slow-slow (SS), fast-slow (FS), and slow-fast (SF) transistor models. 34

3.8 Histogram of Vbot with two different photocurrents in a Monte Carlo simulation.
The variations are the effect of mismatch. The displacement to the left is produced
at high frequencies. The comparison point is set at 1 V. 35

3.9 Histogram of the spiking frequency of a pixel with two different photocurrents in a
Monte Carlo simulation. Same conditions as above. 36

3.10 (Left) Original test image in greyscale. (Right) Test image after adding random
frequency variations with the achieved standard deviation. 36

3.11 Transient simulation characterizing the behavior of the comparator. The fall time
is 60 ns and the rise time is 15 ns. 37

viii LIST OF FIGURES

3.12 (a) Wired-NOR circuit implemented in the pixels’ rows and columns, and the sender
block in the periphery (the circuits in the sender are explained later). Cout and
Rout represent the drain capacitance, the line crosstalk, the output resistance and
the line resistance, respectively. (b) Equivalent circuit of the wired-NOR, neglect-
ing the influence of ro and RGND. MPD=2/0.18, MPU=18/0.7, Rline=235.6 Ω and
Cline=600.1 fF. 38

3.13 Transient simulation of the circuit in Fig. 3.12(b), implementing a wired-NOR in a
row of 95 pixels. 39

3.14 Handshaking protocol in a transient simulation for a cluster of four pixels, with two
transmitted spikes. First, the voltage VP in the input Cph capacitance decreases
until it reaches the comparison value Vbot. The output of the comparator resets
VP to VDD. The spike at t = 105 µs is transmitted if it occurs while WINDOW is
high. The spike generates the REQ X<0>, which is answered by the row arbiters
with a ACK X<0> and RESET X<0>. Then, REQ Y<0> produces BUS REQ
and RESET Y<0>; the sensor (AER transmitter) sends its address to a external
processor (AER receiver), while the spike stored in the pixel is terminated. 40

3.15 Transient simulation with a sinusoidal input photocurrent being codified in spikes
at different frequencies. 41

3.16 Transient simulation to represent the window masking capability, in conjunction
with its in-pixel memory. Events are stored for 334.44 µs before they are discarded
due to current leakage. Spikes and requests use active-low logic in the in-pixel
handshake protocol. 42

3.17 Layout of a pixel cluster, showing the NWELL, PPLUS and active layers. Pixels
in the cluster share the NWELL, as well as with their neighbors. PWELL is con-
nected to ground in every cluster. By seeing the active areas we can interpret the
arrangement of the transistors. 43

3.18 Layout of a pixel. We achieved a pixel pitch of 18.63 µm x 12.38 µm, and a fill factor
of 47.5%. The corners of the photodiode are chamfered. M6 and M5 layers are used
for power supply, ground and MIMCAP. M4 and M3 are used for routing signals
that cross the pixel matrix. 44

3.19 Layout of a cluster with four pixels. Pixels have a mirror disposal to facilitate the
fulfillment of design rule checks (DRC) and achieve a more compact arrangement. 45

3.20 Layout of the pixel matrix with a 96 x 64 resolution. 46

4.1 Block diagram of the AER periphery and its signals. The wired-NORs are marked
in red. The pixel matrix sends a request in both dimensions and receives a row
acknowledgment (there is no need for column acknowledgment) and a reset in both
dimensions. The pixel matrix is omitted for brevity. 47

4.2 Schematic of the sender. It implements the buffering of the wired-NOR signal, which
goes directly to the arbiter tree. An acknowledge arrives and is latched, triggering
a chip request in the AER bus for its corresponding dimension. The acknowledge
is also inverted to activate certain bits of the encoder. When the aknowledge from
the AER sender is received, the pixel is reset. Notice that all signals are related to
their dimension, since there is a sender for rows and columns. 48

4.3 Schematic of the row encoder. All transistors have minimum length and W = 3 µm.
The request line crosses the block without connections to reach the arbiter tree.
The output is an N bit signal to encode 2N addresses. There is another encoder for
columns with one more bit. Each encoder has an output bus. 49

4.4 (a) Schematic of a single greedy arbiter. (b) Last three levels of the greedy arbiter
column tree. We need to use a dummy connection because there are 96 columns,
which is not an exponential number with base 2. 50

LIST OF FIGURES ix

4.5 Post-layout verification of the AER blocks. The column circuits (sender, encoder,
and arbitration tree) are tested with three requests coming from neighbor and ex-
treme pixels. ACK1 comes 6.45 ns after REQ1 goes high, ACK2 comes 0.98 ns after
REQ1 goes low (with REQ2 active), and ACK3 comes 6.63 ns after REQ2 goes low
(with REQ3 active). 51

4.6 Layout of the row periphery, with the sender (left), the encoder (middle), and the
arbiter tree (right). This block is connected directly to the pixel matrix and contains
64 senders, 64 encoders, and 63 arbiters in a 6 stages tree. The column periphery
is not shown for brevity, but the dimensions are almost identical: 96 senders, 96
encoders, and 96 arbiters in a 7 stages tree. The sixth stage has a dummy connection. 52

4.7 Layout of the chip’s top view, with the size of two mini-ASICs. 53

x LIST OF FIGURES

List of Tables

2.1 Comparison Between Asynchronous and Synchronous Readout Techniques in Dy-
namic Vision Sensors in Works Reported in the Liturature 13

2.2 Temporal Characteristics of our Octopus Sensor . 21

5.1 Comparison to Other Octopus Sensors reported in the Literature 55

xi

xii LIST OF TABLES

Abstract, Motivation and
Objectives

Abstract

This Master’s Thesis focuses on the design of an octopus image sensor using UMC0.18 technology.
We incorporated a logic for decoupling spike generation from readout, aiming to solve the main
issues that affect octopus architectures. This type of event-based sensor encodes the intensity of the
light hitting each pixel in a frequency of pulses, known as events or spikes. Spikes are subsequently
read out using asynchronous logic involving wired-NORs, arbiters, and encoders. The operation of
the imager is divided into three main parts: (1) integration of light and conversion into a one-bit
pixel request signal, (2) row and column arbitration to select the output pixel, and (3) encoding
of the pixel address, acknowledgment, and reset.

Chapter 1 provides an overview of the development of event-based imagers and compares them
with mainstream digital image sensors such as CCD or CIS APS. The unique characteristics of
event-based image sensors are presented, with a specific focus on the octopus sensor and the AER
asynchronous readout protocol.

In Chapter 2, the limitations of the asynchronous readout scheme are discussed in greater detail
compared to conventional synchronous readout. Various types of arbiters used in asynchronous
systems are explained. The final section of Chapter 2 encloses the theoretical framework supporting
the implementation of the decoupling logic and motivating the integration of the chip described in
this work. The two readout modes to be tested in the laboratory in future research, namely the
sparse readout mode and the quanta image mode, are presented.

Chapter 3 delves into the design details of the pixel, providing an explanation of its operation
and a step-by-step guide to designing the comparator, which is the most sensible component within
the octopus pixel. The functioning of the in-pixel handshake interface is highlighted, and layout
and post-layout verifications are performed.

Chapter 4 revisits the AER circuits discussed in the previous chapters, showcasing their imple-
mentation in the designed sensor along with the layout and post-layout results.

Finally, Chapter 5 describes the results we expect to obtain in the laboratory and the potential
of spike decoupling in asynchronous readout for all classes of event-based vision systems.

xiii

xiv

Motivation and Objectives

A well-known feature of octopus sensors is that brighter pixels receive more attention in asyn-
chronous readout. Because the integration threshold is reached faster in brighter pixels, they
request bus access more frequently. This can lead to motion artifacts in the image, as a bunch of
pixels hoards the whole bus bandwidth for themselves. Traditional synchronous readout schemes
allocate an equal portion of the bandwidth to all pixels regardless of their activity, effectively pre-
venting such congestion. The limited bandwidth of the arbiters in the asynchronous periphery has
hindered the application of octopus sensors to specific tasks, such as tracking small and intensely
luminous light sources.

In this work, we propose a simple solution using an asynchronous windowed readout scheme
to alleviate congestion in the AER channel, reducing the bias toward brighter pixels in favor of
darker ones. Our solution is based in the assumption that it is more advantageous to have spatially
sparse information, meaning that it is preferable to have more pixels firing, even if each pixel fires
less frequently. By decoupling event generation from readout and leveraging the in-pixel aging
storage mechanism, we anticipate being able to capture spike data from a larger number of pixels
in high-illuminance scenarios, regardless of any spikes that may be missed from more active pixels.

Also, the sensor we designed aims to test the hypothesis that by employing observation windows
to capture spikes, we can effectively preserve the most relevant aspects of the image by leveraging
the Poisson distribution of the spiking matrix output. This method is inspired by the quanta image
sensor (QIS). While QIS relies on single photon detection and justifies its usage of Poisson arrival
statistics based on the random nature of photon arrivals, we seek to experimentally verify whether
we can replicate a similar readout scheme in the laboratory by constructing binary bit planes using
the spikes from our octopus pixels.

The result of this work is a design that was send for manufacturing, and that will allow us
to specifically investigate these approaches in an octopus sensor. The testing of the fabricated
sensor and of the proposed readout schemes is beyond the scopes of this work. Although this is
the only class of event-based sensor that performs light-to-frequency conversion, we expect that
future studies on our sensor can have an impact on related aspects of other event-based sensors,
such as motion artifacts, scalability, and data compression. To achieve this result, this work have
dealt with the following tasks:

• The successful design and development of an octopus image sensor in UMC0.18. The design
process required careful consideration to ensure its viability for manufacturing and future
studying and dissemination of results.

• The primary purpose of this sensor is to serve as an experimental platform for validating the
proposed readout schemes. Future laboratory experiments will evaluate the extent of data
reduction achievable through the decoupling technique and examine the trade-offs between
data reduction and image quality.

• A thorough examination of the evolution and current state-of-the-art in readout schemes
employed in event-based imagers was conducted, both synchronous and asynchronous. This
involved studying existing techniques and understanding their strengths and limitations.

• Establishing a clear and well-justified theoretical framework for the future implementation
of the asynchronous windowed readout was an essential aspect of this work. The frame-
work provides the necessary guidelines and principles for designing and implementing the
decoupling logic and exploring its potential benefits in the future.

CHAPTER 1

Fundamentals of Octopus Image
Sensors

1.1 Introduction

The oldest surviving photograph was taken in 1826 [1]. To capture it, French inventor Nicéphore
Niépce used a camera obscura containing a metal plate coated with a light-sensitive bitumen and
faced it out of a window in his estate in Le Gras. Due to the low light sensitivity of the material,
Niépce exposed the sensor for a few days in broad sunlight. He then dipped the plate in a diluted
lavender oil bath to develop the latent image, dissolving the less-exposed bitumen parts and thus
resulting in a negative image. What Niépce had conceived is a chemical process that we now call
contact print, the basis of film photography. Despite its lack of visual appeal, the image stands as
a testament to the early crafts of image-sensing techniques, a concept that would eventually evolve
into the sophisticated image-capture technologies we enjoy today.

Modern photography is intrinsically associated with digital cameras. A digital image sensor
is fabricated on a piece of semiconductor, which alter its electronic properties when struck with
photons of a specific energy. From here, we can measure the intensity of the light by measuring the
current or the voltage induced in the semiconductor. In 1969, AT&T Bell Labs engineers Willard
Boyle and George Smith developed the charge-coupled device (CCD), leading to the first digital
image sensor to take off to the mass market [2]. CCD image sensors originally used MOS capacitors
to accumulate the photo-generated charge in silicon, which were unaffected by the manufacturing
issues that troubled early passive and active pixel sensors. The packets of charge in a line of MOS
capacitors were then shifted to the next line, until reaching a fast shift register for amplification
and readout. This architecture was improved in 1980 with the pinned photodiode (PPD), that
solved its inherent shutter lag. Due to their invention, Boyle and Smith won the 2009 Nobel Prize
in Physics, along with Michael Tompsett [3].

CCDs had a long list of drawbacks that seem unsolvable. The thousands of charge transfer
steps required to readout each pixel consumed considerable energy, making them hard to scale to
larger pixel counts. Also, they required external processing components outside the chip, which
made them bulky, heavy, and power-hungry; and suffered from undesired effects such as smearing
or blooming. These constraints paved the way in 1992 for Eric Fossum to develop the active
pixel sensor (APS) or CMOS image sensor (CIS) [4]. While he was working for the NASA Jet
Propulsion Laboratory at Caltech, he figured out an architecture that had in-pixel charge transfer
and amplification, so NASA could embed lower-powered and more compact image systems in their
missions. Also, CMOS sensors could be manufactured in standard CMOS fabrication processes,
which made production a lot easier and more affordable than CCDs.

1

2 1.2 - Event-based image sensors

(a) (b)

Horizontal CCD

Output

V
e

rt
ic

a
l
C

C
D

V
e

rt
ic

a
l
C

C
D

V
e

rt
ic

a
l
C

C
D

V
e

rt
ic

a
l
C

C
D

V
e

rt
ic

a
l
C

C
D

V
e

rt
ic

a
l
C

C
D

Charge-to-Voltage

Horizontal ScannerHorizontal Scanner

V
e

rt
ic

a
l
S

c
a

n
n

e
r

Output

Horizontal ScannerHorizontal Scanner

V
e

rt
ic

a
l
S

c
a

n
n

e
r

Output

Charge-to-Voltage

(a) (b)

Horizontal CCD

Output

V
e

rt
ic

a
l
C

C
D

V
e

rt
ic

a
l
C

C
D

V
e

rt
ic

a
l
C

C
D

V
e

rt
ic

a
l
C

C
D

V
e

rt
ic

a
l
C

C
D

V
e

rt
ic

a
l
C

C
D

Charge-to-Voltage

Horizontal ScannerHorizontal Scanner

V
e

rt
ic

a
l
S

c
a

n
n

e
r

Output

Horizontal ScannerHorizontal Scanner

V
e

rt
ic

a
l
S

c
a

n
n

e
r

Output

Charge-to-Voltage

Figure 1.1: Comparison between CCD and CMOS image sensors [5]. (a) CCDs transfer simultane-
ously the signal charges of its photoreceptor, as received, to the next CCD. A fast shift register at
the end of the lines sends them to an amplifier for external readout. (b) A CIS uses amplification
in each pixel, converting the signal charge into a voltage signal . Although CIS were more sensible
to fixed-pattern noise (FPN), this drawback has been eliminated.

Designers could integrate all the timing, control, and signal-processing CMOS circuits on the
same CIS. Fossum founded the spinoff company Photobit in 1995 to develop and commercialize the
CMOS APS. Only six years later, Photobit was acquired by Micron. During those days, Micron
became the world’s largest supplier of image sensors [6]. As of 2023, those charts are led by Sony
and Samsung, but the industry is still largely dependent on IPs licensed by Caltech [7, 8]. It is
estimated that over 6.5 billion CMOS APS were shipped worldwide in 2020.

As we have seen, mainstream image sensors consist of a photosensitive array that provides
absolute illumination values at each point of an image, typically acquired frame-by-frame at a
fixed sequential rate. These systems differ greatly from biological systems found in most animals,
where cells operate independently and asynchronously, primarily focused on reporting changes.
In an attempt to mimic the behavior of biological systems, the development of neuromorphic
silicon retinas or event-based image sensors has run parallel to the development of CIS [9]. These
endeavors languished in front of CIS chips for three decades. However, event-based sensors are
now gaining industrial traction due to their high temporal resolution, very high dynamic range,
low power consumption, and high pixel bandwidth [10]. The arrival of industrial giants in this
field is bringing new methods and techniques for event-based sensing, with promising applications
in machine vision and related AI tasks in which image quality is not essential.

1.2 Event-based image sensors

“These guys are saying that a nerve membrane works like a transistor. Is this right? —Delbruck
asked Mead brusquely” [11]. It is 1967, and Carver Mead is a teacher at the California Institute
of Technology (Caltech), in Pasadena. Mead has a growing reputation as a world-beating expert
on transistor physics. He was an advisor and collaborator of Gordon Moore while working at
Fairchild Semiconductor, who credits him for coining the term Moore’s Law [12]. Max Delbruck,

CHAPTER 1 - Fundamentals of Octopus Image Sensors 3

Invention of CCD
(AT&T Bell)

CMD, FGA, BASIS, SIT
[non-standard MOS
process]

AMI
[CMOS process]

Imagers with in-pixel amp.

Accumulation mode in Si PD (Fairchild)

Smart CMOS
image sensor

Silicon retina
(Caltech)

pinned PD
(NEC)

1970

1980

1990

2000

Year

1960

1st commercial CCD camera
(Panasonic, Sony)

3T-APS, PG type

PPS type CMOS imagers
(ASIC Vision, PASIC, MAPP, ...)

1st commercial MOS camera (Hitachi)

PPS type MOS imager (Plessey)

Birth of solid-state imagers (Westinghouse, Honeywell ìPhotoscannerî, IBM ìScanistorî, RCA ...)

PTr-type (Westinghouse)

3T-APS, PD type

2010

2020

Pixel sharing

Back-side illumination

Stacked structure

4T-APS

PD w/
current

mirror, PTr

The 2009 Nobel
prize in physics
(Boyle & Smith)

DVS, Octopus

Retina

Sony, Samsung

present DVS

Event-based
image sensor

Figure 1.2: Historical evolution of digital image sensors. Originally from [5], modified in this work.

a biophysicist also working at Caltech on bacteria and their viruses, earned the 1969 Nobel Prize
in Physiology or Medicine. After that initial meeting, Mead would dedicate his research efforts
to neuromorphic engineering: a field for analog, digital, and mixed-signal VLSI implementation of
neural systems models. Mead’s group at Caltech gathered the most relevant names in the field, with
the likes of Misha Mahowald, who implemented the first silicon VLSI retina; Tobi Delbruck, son of
Max and developer of the dynamic vision sensor (DVS) [13]; or Kwabena Boahen, who formalized
the address event representation (AER) communication channels between neuromorphic chips [14].
They were strongly influenced by the works of Fukusima and its neocognitron. To this day, the
greatest success of neuromorphic systems has been the emulation of vision signal acquisition and
transduction, resulting in a family of event-based image sensors.

Neurons play a fundamental role in the brain by receiving sensory information, processing it, and
transmitting the results to other neurons, ultimately influencing bodily functions and movement.
Neuronal communication occurs through action potentials, also known as spikes, which are sudden
changes in a neuron’s membrane potential. These spikes have a fixed shape and amplitude and
can be chemically transmitted to other neurons. Simplified models of neurons suggest that spikes
are generated when the integration of electrical current input exceeds a certain threshold. This

4 1.2 - Event-based image sensors

(a) (b)

Figure 1.3: Silicon retina designed by Mahowald [16]. (a) Diagram of the silicon retina showing
the resistive network and a single pixel element. (b) Address event representation (AER) scheme.
Asynchronous neurons request control of the bus when they generate action potentials and transmit
their addresses.

process, often referred as the integrate-and-fire neuron model, can be compared to a tipping bucket,
where the neuron collects and integrates input current until it reaches a threshold, at which point
a spike is emitted. Consequently, the neuron’s output is encoded in the timing of these spikes,
creating a stream of spikes with a constant amplitude that is transmitted to other neurons.

Event-based image sensors, or event-driven image sensors, work by compressing light intensity
values within their pixels. Unlike mainstream image sensors, these pixels do not transmit analog
or digital absolute light intensity information. Instead, they perform all the necessary analog
processing at the pixel level and transmit an action potential called an event or spike. As a result,
an event-based pixel matrix produces a set of spikes, or events, based on the pixel architecture.
Although we can think of the spike as a 1-bit digital signal, it behaves more like an impulse that
carries the time at which the event occurred. The sensor typically encodes the timestamp of the
spike either on-chip or externally while transmitting the address of the firing pixel. Consequently,
event-based sensors are intrinsically asynchronous, with each pixel autonomously detecting and
transmitting events. This event-driven operation frees the sensor from a fixed time-step, allowing
it to remain idle until a spike occurs, naturally responding to the visual scene. Efficient spike
encoding ensures that the number of updates is minimized.

We can distinguish several classes of event-based sensors depending on how events are produced
[15]. The original works published by Mahowald and her colleagues implemented spatial contrast
detection by computing the average illumination values between neighboring pixels through a
diffusive network of MOS variable resistors and comparing it with local pixels [16]. If they differ,
the pixel spikes. Mahowald already implemented the AER protocol in its silicon retina.

Mahowald’s design was later improved by Zaghloul and Boahen [9], with additional features
modeled after layers of the biological retina. But these silicon retinas had pixels that were vastly
too big and noisy. Circuit complexity, silicon area, fill factors, noise levels, mismatch: they all lan-
guished in front of its CIS rival. The neuromorphic community used these first chips to demonstrate
neurobiological models and theories, but did not find traction in real-world applications.

Eventually, the class of event-based sensor that stood out was the DVS. This family of sensors
are only sensitive to temporal contrast, achieving extremely high temporal resolution (in the order

CHAPTER 1 - Fundamentals of Octopus Image Sensors 5

Figure 1.4: Preliminary image deblurring results on high-speed scene, obtained combining Proph-
esee Metavision sensor and algorithms with Snapdragon platform.

of µs), intrascene dynamic range (up to 140 dB) and low latency (also µs). More importantly,
these sensors squeeze a lot of information about the visual scene without the need of external pro-
cessors, optimizing data transfer, storage, and processing, hence increasing power efficiency and
compactness of the vision system. It is a prime example of sparse computing: the removal of use-
less and redundant data, computing only where and when needed. The foundational paradigm of
neuromorphic engineering. Besides, by shifting performance constraints from the voltage domain
into the time domain, dynamic range is no longer limited by the power-supply rails, thus providing
relative immunity to the aggressive supply voltage scaling of modern CMOS technologies. Nowa-
days, DVS are find frequent applications in robotics, tactile sensing, high-speed control, driving,
space and computational photography.

Delbruck and Patrick Lichtsteiner came up with the DVS while working on the European
project CAVIAR [17]. Their pixel design had three main blocks: an active unity-gain logarithmic
photoreceptor, which is buffered to a capacitive-feedback amplifier that computes the temporal
derivative of the voltage induced by the photoreceptor, and a couple of comparators that monitor
the amplified voltage. This pixel produces ON and OFF events, depending on whether there is a
positive or negative temporal contrast. These sensors have received considerable attention by the
industry, to the point where they have become synonymous with event sensors, and are well suited
for high-speed motion detection and analysis, object tracking, and shape recognition, among many
others [10].

DVS cameras are already available on the shelves. Actually, some companies already have
several generations in their line of products. Sony’s IMX636ES was designed in collaboration with
Prophesee, a French company with four sensors in their catalogue. Then there is iniVation, a
spin-off of the ETH Zurich participated by Delbruck, with three manufactured sensors. Samsung
also has three, whereas the Chinese start-up has launched two. All of them have published their
results in different editions of the ISSCC [18, 19, 20, 21, 22, 23, 24].

Delbruck’s pixel architecture served as the foundation for subsequent generations of DVS de-
veloped by the major players, which have been incorporating new features into their designs.

6 1.2 - Event-based image sensors

Delbruck itself reported the DAVIS in 2014 [25], a hybrid sensor that combines the DVS and APS.
The DAVIS enabled both conventional frame-based sampling of intensity and asynchronous detec-
tion of logarithmic intensity changes. Besides, a significant breakthrough seems to be underway,
as Prophesee garnered considerable attention at the 2023 Edition of the Mobile World Congress.
Event-based sensors have emerged as a viable option to complement frame-based methods, par-
ticularly in consumer-facing products. In light of this, Prophesee has partnered with Qualcomm
to enhance the quality of smartphone cameras in fast-moving dynamic scenes. It won’t be long
before we start seeing these products integrated into wearables or AR/VR headsets.

However, recent literature indicates a shift in the principles of these sensors. There is a grow-
ing trend among companies towards synchronous readout schemes, deviating from the traditional
asynchronous arbitration of spikes using wired-NOR circuits. The limitations of large sensor for-
mats and the unpredictable arbitration time of asynchronous systems have led companies to favor
more deterministic approaches. Although Prophesee and Sony previously utilized a mix of asyn-
chronous arbitration between pixel rows and sequential scanning of columns, their most recent
research reveals a shift towards event-based vision sensing combined with conventional framed
image acquisition.

A seemingly inevitable drawback of event-based sensors is their lower spatial resolution when
compared to CIS imagers: pixel count is usually below 1 MP. Besides the limits imposed by current
asynchronous handshake circuits, the complexity of the pixels’ circuitry is a constraint for reduced
pixel pitch. Traditionally, pixel sizes have ranged from 17 µm to 50 µm, although new designs
have achieved sizes as small as 4.95 µm through vertical integration [26]. In this work, we address
the issue of scalability in event-based sensors. Before delving into the limits of the AER readout
scheme, let’s provide more details about the specific class of event-based sensors implemented in
our work.

1.2.1 Octopus sensor

We have already discussed two classes of event-based sensors: those that encode spatial contrast
in their events and those that are sensitive only to temporal contrast. A third class consists of
bioinspired image sensors that transmit pixel absolute intensity in the timing of events. While
many of these sensors do not achieve redundancy suppression or latency reduction, they do benefit
from other properties of event-based sensing, such as high dynamic range, low-power operation,
and high SNR. Pulse-modulated (PM) imagers, with various architectures, usually employ a com-
parator as a fundamental building block [27], and benefit from smaller pixel size compared to
other event-based sensors. Unlike conventional CIS imagers, which integrate photocurrent for a
specific scanning period and then read the integrated voltage in a raster scan, PM image sensors
integrate photocurrent until it reaches a fixed voltage threshold, autonomously generating a spike
when crossed.

One implementation of time-domain encoding is the time-to-first spike (TTFS) image sensor,
which uses pulse-width modulation (PWM) schemes by measuring the time between a pixel’s reset
and the switching of the comparator. Time is measured using pixel-level or global timers. A mea-
surement cycle starts when the photodiode voltage is reset to a defined voltage level, which is then
discharged by the photo-generated current. A comparator continuously compares the integration
voltage ramp to a voltage reference. The incident light intensity is inversely proportional to the
integration time. Then again, the measurement is not externally governed as in a conventional
APS or CCD, and each pixel is allowed to autonomously choose its own optimal integration time.
Once the threshold is reached, a pulse is generated.

In 2011, Christoph Posch introduced the asynchronous time-based image sensor (ATIS) [28],
which combined a DVS architecture for change detection with absolute exposure measurement
carried out locally by individual pixels using a TTFS circuit triggered by change detection. The

CHAPTER 1 - Fundamentals of Octopus Image Sensors 7

Figure 1.5: Pulse-modulation imagers [28] These pixels transmit absolute intensity of incident
light through the timing of events in the comparator’s output. (a) Time-to-first spike (TTFS)
architecture, based on PWM. Brighter pixels spike sooner than darker pixels. (b) Octopus pixel
architecture, using PFM encoding. Larger photocurrents are converted into higher frequencies.

authors reported an intra-scene dynamic range of 143 dB static, 125 dB at 30 fps equivalent
temporal resolution, a typical SNR of 56 dB, and a FPN under 0.25%. The sensor was fabricated
on UMC180, with a supply voltage of 3.3 V and 1.8 V for analog and digital circuits, achieving
QVGA resolution with a pixel pitch of 30 µm x 30 µm and a fill factor of 30%. They implemented
asynchronous readout through an AER channel. The pixels comprised 77 transistors, 3 capacitors,
and 2 photodiodes, and power consumption of the entire sensor was 175 mW.

In this work, we implement the octopus sensor, which utilizes pulse-frequency modulation
(PFM). Octopus pixels encode their absolute light intensity in the frequency of spikes emitted
by each of them. Their implementation is similar to that of TTFS imagers, but with a self-reset
mechanism in the voltage ramp, initiating a new integration cycle each time the voltage threshold
is reached. The interspike interval is inversely proportional to the incident light’s photocurrent,
so that a higher event rate corresponds to a brighter pixel. Octopus pixels can achieve spiking
frequencies of dozens of kHz. However, the precision of frequency measurement is limited by the
voltage offset of the comparator induced by mismatch, which can lead to FPN, as well as by kTC
noise, by charge injection in the reset transistor, and by the switching delay of the comparator.

Culurciello and Boahen introduced the first octopus sensor in 2003 [29]. They described a
current-feedback event generator for monitoring the integrated voltage and generating spikes upon
reaching the threshold. The architecture aimed to minimize power consumption while maximizing
gain and bandwidth. Readout was asynchronous using the AER protocol with wired-ORs for
arbitration. The matrix resolution was 80 x 60, with a pitch of 32 µm x 30 µm, and a fill factor
of 14%. They achieved a dynamic range of 120 dB and a maximum bandwidth of 40 MHz for the
entire array, with a maximum update rate per pixel of 8300.

One notable feature of octopus sensors, as observed by the authors, is that brighter pixels
receive more attention in asynchronous readout. Because the integration threshold is reached

8 1.2 - Event-based image sensors

(a) (b)

(c)

Figure 1.6: Schematics and images from the original octopus sensor [29]. (a) Asynchronous AER
readout. A latch buffers the request from the pixel. The request signals are arbitered in the arbiter
trees, which select the first pixel that produced an event. The encoders output the address of that
selected pixel. (b) Pixel schematic, showing the current-feedback event generator and the in-pixel
handshake circuit. (c) Example images with linear intensity (top) and log scale (bottom).

faster in brighter pixels, they request bus access more frequently. This can lead to motion artifacts
in the image, as a bunch of pixels hoards the whole bus bandwidth for themselves. Traditional
synchronous readout schemes allocate an equal portion of the bandwidth to all pixels regardless
of their activity, effectively preventing such congestion. The limited bandwidth of the arbiters in
the periphery has hindered the application of octopus sensors to specific tasks, such as tracking
small and intensely luminous light sources. In this work, we propose a simple solution using an
asynchronous windowed readout scheme to alleviate congestion in the AER channel, reducing the
bias toward brighter pixels in favor of darker ones.

Octopus sensors have demonstrated usefulness in tracking small and bright light sources [15].
Their excellent temporal resolution, low power consumption, and reduced data output make them
suitable for space navigation, precisely gauging the sun’s position. [30]. These digital sun sensors
have evolved into more compact and efficient solutions, incorporating TTFS operation [31] or
utilizing photodiodes in the photovoltaic region for self-powering [32]. Octopus sensors have also
been proposed for flame monitoring using NIR filters [33] and color detection [34]. Additionally,
in the early 2000s, they were considered for retinal prosthesis applications [35].

While readout saturation and large FPN have limited their use in conventional imaging applica-
tions, efforts have been made to address these drawbacks. For example, authors in [36] incorporated

CHAPTER 1 - Fundamentals of Octopus Image Sensors 9

in-pixel spike counting and memory in 8-bit Gray code format for parallel counting and readout.
Their synchronous architecture allowed them to capture snapshots of the scene during the in-
tegration period. Leñero integrated several hybrid pixels with pulse-frequency modulation and
contrast computation [37], APS [38], and frame-based readout [39]. Recently, a method involving
synchronous readout of spikes in octopus image sensors was proposed [40].

1.2.2 Address event representation (AER)

Event-based image sensors draw inspiration from the computational processes of biological systems,
but some of these can not be translated into silicon in a feasible way. While our brains are composed
of a highly-dense 3D network of neurons, axons, and synapses, CMOS technology is fundamentally
2D and cannot replicate such intricate wiring. In a neural network, a single neuron is typically
interconnected with thousands of other components, whereas standard digital logic gates typically
connect to only a few inputs. This physical disparity presents a constraint for artificial vision
systems, where each pixel would require a dedicated wire to convey its data out of the array.
However, designers overcome this limitation by capitalizing on the remarkable speed of transistors.
Unlike the spiking activity of a neuron, which lasts for milliseconds, the switching delay of a
transistor is on the order of picoseconds. Taking advantage of this discrepancy in timescales,
communication in neuromorphic systems is often implemented using a time-multiplexed, packet-
switched communication method called address event representation (AER).

A packet-switch network operates by time-multiplexing individual segments of the network,
with packets being communicated requesting access to shared resources on the fly. Such protocols
suit networks where two endpoints exchange bursts of small amounts of information, such as spikes
in a neuromorphic system. AER provides the multiplexing and demultiplexing functionality for
the spikes that are generated by or delivered to a cluster of neurons. Notice that AER is also
used to create networks of neuromorphic processors that can send and receive spikes, but in the
context of event-based image sensing there is no need to communicate spikes to the pixels. In
our application, a standard digital processor acts as the AER receiver, processing spikes as they
arrive. Practically all bioinspired vision sensors with spiking output reported in the literature use
the AER protocol, or some modified version, to communicate their data.

Given that spikes are generated asynchronously, the AER sender circuits in an event-based sen-
sor must accept spikes as they are generated, arbitrate between simultaneous spiking pixels, encode
the address of the first firing pixel, and multiplex the address in the shared bus. Additionally, a
routing topology within the pixel matrix is required to transmit the spikes to the AER circuits.
Several schemes exist for each of these blocks, but we will focus on those implemented in octopus
sensors described in the literature. For more detailed information on arbitration schemes, routing
topologies, and AER receivers, we recommend referring to [41].

The AER sender of our octopus sensor is constructed as a 2D matrix of address-event sender
elements, or pixels. The address event is represented by the row and column of the spiking pixel
in a word-serial addressing scheme. Encoding and arbitration are done at the row level first and at
the column level later. When both dimensions are finished, the pixel’s row and column addresses
are transmitted through a shared digital bus in a bundled-data 4-phase handshake asynchronous
transmission, using a request signal (REQ), an acknowledge (ACK), and the data buses required to
encode its location. Addresses transmit their implicit timing information of the spike, timestamped
on the sensor itself or in the AER receiver. These blocks are represented in Fig. 1.7.

The AER circuits in both dimensions are almost identical. The only difference is that the pixel
does not need to receive the acknowledge column token. The first stage in the AER readout is a
sender with four functions: buffering the request and acknowledge signals coming from and going
to the pixel matrix, implementing the pull-up transistor of the wired-NOR routing topology, and
controlling the logic for the AER multiplexing and pixel reset. There is a sender for each array

10 1.2 - Event-based image sensors

in the dimension, which is equal to the square root of the number of rows or columns,
√
L. The

second stage is a tree-shape arbitration logic to solve contention and queuing, formed by ln(
√
L)

number of stages. The third stage is the encoder, which is activated with the acknowledge signal.
When both dimensions are arbitered, the sensor sends a request signal with inverted polarity to
the AER receiver, which answers with an acknowledge to let know the sensor that it has access to
the data bus. After that, the action potential of the spiking pixel is reset.

The scheme we described is the standard dubbed AER 0.02, used for single-sender to single-
receiver communications; that is, a point-to-point AER link. There are other schemes to implement
the AER readout, with minor modifications in the arbitration block using ring arbitration [42], or
radically different paradigms for the entire multiplexing sequence, such as the burst-mode operation
[43]. The AER 0.02 standard was loosely defined, without specification of voltages, bus width,
signal polarities, signal setup and hold times, or any kind of connector standard.

(a)

(b)

Figure 1.7: (a) Schematics of an octopus sensor as an AER sender implemented by Leñero [34].
The first stage provides buffering and signal control for requests and acknowledges pixel arbitra-
tion. Requests are sent to an arbiter tree, which selects the winning row or column through an
acknowledge, which then selects a word from the encoder. (b) Signal flow of the arbitration be-
tween rows and columns, and the AER point-to-point link with a 4-phase handshaking protocol
[38].

CHAPTER 2

Asynchronous Readout

This chapter describes the theoretical framework that is the basis for the research conducted in this
work. Section 2.1 outlines the limitations of the asynchronous AER readout scheme in comparison
to conventional synchronous readout methods. Section 2.2 delves into further detail regarding
the various types of arbiters utilized in asynchronous systems, highlighting the reasons why fair
arbiters fail to address the congestion issues in the readout channel. Finally, Section 2.3 introduces
the technique proposed in this work, offering mathematical justification for its application and
showcasing Matlab simulations to support its validity.

2.1 Tenderness towards synchronous readout techniques

A neuromorphic system should outperform conventional technology. Historically, most neuromor-
phic applications have failed to convincingly demonstrate that the bioinspired approach is better
than simply scaling logic and exploiting parallelism. Emulating the data-driven computation and
communication architecture used in brains may not necessarily exceed the capabilities of the digital
clocked paradigm. Vaguely stating that metronomic schedules are less resource-efficient than an
event-driven approach do not guarantee superior performance in practical usage and adherence to
constraints.

Designers at industry leaders such as Sony and Samsung have likely contemplated this issue.
As discussed in Chapter 1, the industry has recently shown interest in event-based sensors, partic-
ularly to the DVS architecture. Initial implementations of DVS employed asynchronous AER logic
for collision handling and event transmission. While subsequent designs, like the DAVIS sensor
developed by Delbruck, integrated additional functionality such as global shutter with active pixel
sensing (APS), the event reading still relied on asynchronous logic. These designs achieved event
rates of up to 50 Meps and a pixel size of 18.5 µm.

In 2017, Samsung introduced a slightly modified approach in a VGA format DVS employing
Grouped-AER (G-AER) [44]. Their scheme involved grouping 8 neighboring pixels within a column
and treating them as a single entity. The ON and OFF events of the pixels within a group were
processed in parallel. The readout scheme combined asynchronous handshake arbitration between
columns with burst-mode clocked readout of rows for groups containing at least one firing pixel.
Using a digital logic synthesized with a 50 MHz clock, they reported an event rate of 300 Meps, a
pixel pitch of 9 µm, and 50 mW of power consumption.

In 2018, the Swiss company iniVation implemented a low-resolution DVS with synchronous
AER (SAER) [45]. They introduced an innovative and intricate readout scheme where the pixel
matrix was controlled synchronously by external circuitry. The scheme utilized two distinct pulses:

11

12 2.1 - Tenderness towards synchronous readout techniques

one to capture an event frame into each pixel’s internal event memory and another to reset the
pixel. Pixels were organized into 2x2 groups that shared a digital logic responsible for reading
their internal memory and determining whether to transmit their events. In this way, they per-
formed pre-readout pixel-parallel suppression of noise and spatial redundancy. The readout process
occurred sequentially in both dimensions, following a token-ring scheme where columns or rows
that had spiked were read while those that did not were skipped. They reported an event rate of
180 Meps, a pixel pitch of 10 µm, and 4.9 mW of power consumption.

In 2020, Samsung made advancements in their DVS technology and scaled it up to a resolution
of 1280x960 pixels [26]. The researchers acknowledged that higher resolution led to motion artifacts
caused by timing errors within the limited bandwidth of event-driven readout. To address this,
they took two approaches. First, they completely removed all asynchronous readout logic and
replaced it with sequential column readout. The authors criticized the ”unpredictable process
timing inaccuracy” of the arbiter tree. Second, they introduced a global event-holding function
using in-pixel storage cells, similar to the global shutter in CIS. This modification resulted in an
event rate of 1.3 Geps, a pixel pitch of 4.95 µm, and 150 mW of power consumption.

Also in 2020, Sony collaborated with Prophesee to develop a 1280x720 DVS sensor that retained
asynchronous arbitration in one dimension [22]. Rows were connected via a low-latency interface
to an asynchronous selection tree. Events from the active row were promptly timestamped using
an auxiliary time-out column located at the end of the pixel matrix. Subsequently, the entire row
was scanned through an asynchronous-to-synchronous interface. The selection operation for the
active row was pipelined, enabling parallel processing of previous data while new row arbitration
took place. Additionally, their architecture was filled with on-chip digital processing of events. The
reported specifications for this sensor were an event rate of 1.066 Geps, a pixel pitch of 4.86 µm,
and 32 mW of power consumption.

In 2023, the ISSCC featured three papers describing modified DVS sensors with hybrid pixels
in a stacked configuration, featuring significant architectural innovations. OmniVision presented a
1032x928 DVS matrix with a readout scheme similar to Sony’s 2020 implementation [18]. However,
the row-selection tree in OmniVision’s design operated synchronously and was governed by a
250 MHz clock. The selected row was scanned entirely, and skip logic was implemented in both
dimensions to bypass rows or columns that did not require reading. This sensor achieved an
event rate of 4.6 Geps, a pixel pitch of 8.8 µm, and 46 mW of power consumption. The other two
papers were designs by Sony [19, 20]. Both sensors followed the industry’s trend of abandoning
asynchronous readout in any form. In both cases, the output of the logarithmic amplifier was stored
in a sample-and-hold circuit, which was then processed by a comparator using a three-phase logic.
Events were read per row through a scan access mechanism, with a skip logic to ensure that only
rows with at least one event were read.

The position of these industrial giants towards asynchronous readout techniques can be sum-
marized by statements found in Sony’s latest published work [19]. According to them, ”the unpre-
dictable arbitration time [of asynchronous readout] degrades time accuracy and affects system-level
features such as recognition accuracy in high-activity scenes. There have been several efforts to
increase event throughput with innovative circuit techniques, but the additional processing in-
creases the post-processing cost to reconstruct a frame from asynchronous event data. Moreover,
conventional image acquisition with very low noise is still helpful for the complex tasks combined
with event-based vision sensing”. As these companies introduce the DVS into the market, they
are moving away from circuits implementing the AER scheme. However, a thorough comparison
between asynchronous and synchronous readout schemes is still lacking in the literature.

The arbitration circuits in asynchronous readout are often considered the main bottleneck in
these schemes, which have not been able to exceed rates of 50 Meps. At high event rates, arbiter
trees tend to saturate, giving more priority to certain regions in the matrix and causing unreliable
timestamps for events. It is worth noting that most of the asynchronous readout AER logic

CHAPTER 2 - Asynchronous Readout 13

Table 2.1: Comparison Between Asynchronous and Synchronous Readout Techniques in Dynamic
Vision Sensors in Works Reported in the Liturature

Asynchronous Synchronous

Pros
Low power consumption and readout
latency at small event rates

Maximum readout speed with
constant latency

Suitable for low resolution sensors Solution for larger formats

Per pixel timestamp
Frame-like behavior is appropriate
for machine vision applications

Cons
Limited readout speed due to
arbitration delays

Considerable static power
and latency at low rates

Non-deterministic behavior
Temporal resolution is
solely dependant on frame rate

used today is based on the arbiters proposed by Boahen in 2001 and 2004, which have not been
widely challenged by other researchers. Even Prophesee’s 2020 design [22] uses a fair arbiter tree.
Additionally, the 2D routing arrangement in rows and columns presents a significant limitation, as
highlighted by Gómez-Merchan [46].

A new approach has recently been proposed by Boahen [47], introducing a tree-shaped alterna-
tive where arbiters are integrated inside the pixel matrix rather than in the periphery. This novel
approach aims to address the limitations of conventional 2D routing arrangements. Although these
topics are beyond the scope of this work, it is valuable to explore the circuit implementations of
asynchronous arbiters. Understanding the circuit-level details can shed light on the challenges and
potential solutions related to asynchronous readout schemes.

2.2 Arbiters

Arbiters play a crucial role in asynchronous circuit design, alongside other components such as
latches, Muller C-elements, MUTEX, and MUX components [48]. Handshake links and data tokens
serve as abstractions that are equivalent to the register transfer level (RTL) used in synchronous
circuit design. Arbiters are relatively expensive in terms of speed. However, arbiters are relatively
expensive in terms of speed, and the loss of determinism in circuits with arbitration can introduce
challenges in testing and verifying design correctness. Consequently, the neuromorphic community
has explored various approaches to collision prevention. Hafliger identified three main schemes:
full arbitration, where collisions are resolved in the AER sender; discarding, where collisions are
resolved in the receiver; and aging, which involves discarding old pulses. This work focuses on the
first scheme, which is the only that guarantees that the 4-phase asynchronous handshake between
the AER sender (the octopus sensor) and the AER receiver (an external processor) seen in Fig.
2.2 communicates unaltered addresses.

14 2.2 - Arbiters

Receiver

Figure 2.1: (Left) A 4-phase, bundled-data communication. A sender is connected to a receiver by
data lines, a request line, and an acknowledge line. (Right) Its timing diagram. When the request
line is low, the data is to be considered invalid and liable to change at any time. The sender usually
waits for the acknowledge signal to remove the data from the data bus.

Why is arbitration between spikes so important? The time at which the pixel address is
generated corresponds to the time at which the pixel produced a spike, plus a small delay due to
the encoding process. As long as spikes are sufficiently separated in time, the encoding process
ensures that the addresses are correctly ordered. If each pixel in the 2D matrix were guaranteed
to only produce a spike when no other pixel in the same matrix was spiking, then the multiplexing
circuits would correspond to a standard asynchronous encoder circuit. However, this is not a
valid constraint as groups of pixels could have overlapping firing times. AER encoders therefore
generally use arbitration logic to handle potentially simultaneous spike arrival times from multiple
pixels.

Employing arbitered access to the shared bus prevents collisions, thereby increasing throughput.
An arbiter grants only one request at a time and outputs the address of the granted pixel through
the encoder. The arbiter receives row or column request lines from the pixel array via a routing
interface and performs arbitration among the active lines. The arbiter manages the handshaking
signals from the row (or column) requests and provides acknowledgments. For each dimension of
row and column (assuming N rows or columns), the arbiter consists of a tree-shaped structure of
N - 1 two-input arbiter cells and ln(N) tree levels required to arbitrate between N pixels. Each
two-input arbiter gate outputs a request to the two-input arbiter at the next level if any one of its
two input request signals is active. These circuits are located in the periphery of the matrix and
are usually routed to the pixels with a grid arrangement as seen in Fig. ??.

The bandwidth of communication links in image sensors is a crucial specification, and asyn-
chronous readouts in event-based sensors have struggled to surpass rates of 50 Meps. Boahen
introduced five criteria to evaluate the performance of event-driven communication links: capac-
ity, throughput, latency, integrity, and dispersion [14]. Capacity represents the maximum event
transmission rate, while throughput reflects the sustainable event rate in practical conditions. La-
tency measures the average transmission delay, integrity indicates the fraction of correctly delivered
spikes, and dispersion quantifies the standard deviation of the latency distribution. These param-
eters are influenced by various factors, including the design of the arbiter block, routing scheme,
encoders, and the external AER receiver.

Arbiter circuits are primarily designed to meet two main criteria: low latencies and fairness.
The former ensures that incoming requests are serviced promptly, while the latter guarantees that
requests are serviced in the order they are received, regardless of their position on the arbiter tree.
In the following discussion, we explore two different arbiter designs that illustrate the trade-offs
implemented in the circuits as they have evolved over time.

CHAPTER 2 - Asynchronous Readout 15

Pixel
1,1

Pixel
1,2

Pixel
1,L1

Pixel
1,L

Pixel
2,1

Pixel
2,2

Pixel
2,L1

Pixel
2,L

Pixel
H1,1

Pixel
H1,2

Pixel
H1,L1

Pixel
H1,L

Pixel
H,1

Pixel
H,2

Pixel
H,L1

Pixel
H,L

R
ow

 arbiter tree

Column arbiter tree

Pixel matrix

R
ow

 encoders

Column encoders
R

ow
 interface

Column interface

Wired OR
W

ired O
R

req/ack

req/ack

bus_bit_y

bus_bit_x
bus_req_x

bus_req_y

_bus_req

_bus_ack

reset_periph

reset_periph

reset

Figure 2.2: Block diagram of an asynchronous readout AER implementation for an event-based
image sensor with a resolution of L x H pixels in a grid arrangement. The row and column interface
can include pull-up elements for the wired ORs, buffers, and latches, as well as control logic for
handshake signals. The main limitation we face when scaling pixel count is the size of the wired
ORs. These column and row metal lines get longer and have more pull-down transistors connected
to them, causing the capacitance of the lines to increase, degrading signal integrity and slowing
the readout process. In the arbiter trees, each line is actually formed by two wires: a request and
an acknowledge. There are ln(L) (or ln(H)) levels and L - 1 (or H - 1) arbiters in each tree, in the
case of square matrix dimensions.

2.2.1 Greedy arbiter

All arbiters are 2-channel, meaning that they can attend to two input requests simultaneously.
They adhere to a “first come first served” functionality. However, the tree topology might introduce
an unfair mechanism, as subtrees do not withdraw their request until all their leaves are serviced,
causing the pixels closer to the previous winner to gain an advantage over more distant pixels,
regardless of which pixel requested first. Consequently, a row with high activity tends to hold onto

16 2.2 - Arbiters

ack req0 req1

ack0

ack1

req

req

ack

req0

req1

ack0

ack1

Transistor count (27 T):

- NAND x3 (12 T)

- NOR x2 (8 T)

- Metastability Filter (5 T)

- Inverter (2 T)

RS bistable

Glitch
filter

Figure 2.3: Circuit implementation of a glitch free 2-way greedy arbiter [49]. The RS bistable (req0

= S, req1 = R) and metastability filter form the core mutual exclusion element. It exclusively
acknowledges one of two incoming requests, only if its own outgoing request is acknowledged. The
glitch filter prevents a condition where the output request switches logic briefly. The transistor
count is 27.

the arbitration bus leading to the transmission of events from only a part of the chip. Depending
on the fairness of the architecture, we differentiate between greedy arbiters and fair arbiters.

In the octopus sensor, we have implemented greedy arbiters, which are simpler and employ
fewer transistors, thus minimizing area. Although several circuit implementations of fair arbiters
exist, we opted to adopt the architecture proposed by Haflinger [49]. This particular architecture,
seen in Fig. 2.3, incorporates a mutual exclusion (MUTEX or ME) element, a common component
found in all asynchronous arbiter architectures, whether they are greedy or fair. Typically, a
MUTEX is implemented using a bistable element and a metastability filter.

The RS latch used in the arbiter cell operates with active low inputs. In its idle state, both
outputs of the latch are set high. When a child sends a request, depending on which request
signal arrives first, one of the outputs switches and propagates the request through the glitch filter
to the next level of the tree. If this request is granted by an incoming acknowledge, then its
corresponding acknowledge is propagated back. This arbiter cell does not need to wait for requests
from its parents to be cleared before resetting its acknowledge signals. Instead, the cell clears its
acknowledge as soon as its daughter’s request clears. Only when there are no more requests from
lower levels (req0 and req1) are req and ack withdrawn, allowing other arbiter cells on the same
level to be acknowledged. However, if there is a simultaneous request; that is, req0 and req1 are
both active during handshaking, a greedy path is formed. In this path, the token is granted to
that specific request without propagation to the top of the tree, thus ignoring other requests in
the tree that might have occurred earlier. This situation is illustrated in Fig. 2.4.

In addition to the issue of greediness, this circuit also presents a potential problem of glitches
at the output request when both req0 and req1 are high, and one of them transitions to low after
the acknowledge signal goes high. When req0 (or req1) is withdrawn, the RS latch transitions from
(0,1) to (1,0), passing through a transient state of (1,1). During this state, req briefly switches
to low. To prevent this situation, the circuit includes a glitch filter with an additional input that

CHAPTER 2 - Asynchronous Readout 17

Figure 2.4: Token movement in an arbiter tree to handle the requests from neurons. In a greedy
arbiter tree, neurons located near each other may form a greedy path because the token does not
need to reach to the top of the tree. A fair mechanism is needed to ensure that requests from an
arbiter are blocked until its parent’s acknowledge is cleared.

leaves the output floating while the state lasts. It’s important to note that this circuit does not
implement a metastability filter.

2.2.2 Fair arbiter

Boahen introduced both the original greedy arbiter [14] and the fair arbiter circuit [43], and
their schematics and detailed behavior can be found in [41] for further reference. In a recent
development, Fok and Boahen presented a new fair arbiter implementation [47]. An asymmetric
C-element ensures fairness by blocking new requests until its parent’s acknowledge signal clears,
which occurs immediately after the cell clears its own request. Therefore, requests propagate
upwards in the tree until they reach a cell where the other request is currently selected. This
implementation addresses the issue of fairness in the arbiter circuit design.

The 2-way fair arbiter employs a mutual exclusion element to determine which child’s request
is served first. The latch component ensures the selection of one request, while the metastability
filter prevents any metastable signals before toggling the outputs. The two NOR gates play a
crucial role in preventing overlapping handshakes, ensuring that a new request from the arbiter’s
children does not receive unfair attention. These components work together to maintain fairness
in the arbitration process.

In [50], a comparison between different implementations of 2-way fair arbiters can be found.
Regardless of fairness, arbiters can introduce motion artifacts due to their limited bandwidth,
unpredictable nature, and latency. These factors can lead to errors in timestamp accuracy [26]. As
shown in Fig. 2.7, arbitration is the preferred choice for event-based applications with sparse spatial
and temporal activity. While temporal dispersion decreases with advancements in technology and
faster logic, the collision probability remains the same. Current arbitration circuits have drawbacks
such as occupying area and introducing additional time constraints, which impact the pixel count
and the achievable event rate readout in event-based imagers.

18 2.2 - Arbiters

w

VDD

A

B

aC

A

B
S

A B S
0 0 0
0 1 0
1 0 St-1
1 1 1

(a) (b) (c)

Figure 2.5: Asymmetric Muller C-element, an essential component for understanding the fair
arbiter behavior. (a) Symbol of the circuit. (b) Transistor implementation. (c) Truth table.

req

ack

req0

req1

ack0

ack1

Transistor count (38 T):

- NOR x3 (12 T)

- Mutual exclusion (12 T)

- Asymmetric C-element x2 (14 T)

aC

aC

ack _req0 _req1

_req

Mutual exclusion
ack1

ack0

Figure 2.6: Asynchronous fair arbiter implemented by Fok and Boahen [47]. The RS bistable with
NOR gates implies the use of active-low logic for requests. A metastability filter is implemented
with two inverters at the output of the latch, with pull-down source connected to the reciprocal
request. The asymmetric C-element guarantees that no greedy path is created. Transistor count
is higher than for the greedy arbiter.

Figure 2.7: Image artifact occurs by the mismatch between event generation time and readout
time for high event rates [51].

CHAPTER 2 - Asynchronous Readout 19

2.3 Our solution: windowed asynchronous readout

This work introduces a novel approach to decouple event transmission from readout. We achieve
it by inserting a switch immediately after the comparator in a octopus pixel. In Chapter 3, we
will delve into the details of the pixel’s design and this switch, which is activated by an external
signal and acts as a time window to selectively allow or dismiss spikes for communication. The
primary objective of this technique is to mitigate congestion in the AER channel, particularly
in high-illuminance scenarios where there is a bias towards brighter pixels. The application of
this approach is specifically investigated for an octopus sensor that performs light-to-frequency
conversion, as described in the preceding chapter.

We also expect to study whether this technique can address the issue of scalability in all kind
of event-based sensors. As resolution increases, the event rate goes up and the time between
events is reduced. Authors in [52] demonstrated that there are some major drawbacks in using
high-resolution DVS to solve standard computer vision tasks, and that low-resolution cameras
can outperform high-resolution ones in low-illumination and high-speed conditions. Nevertheless,
DVS development will inexorably trend toward higher resolution sensors (HD, Full HD or even
4K) required in certain applications, so the question of scalability that also motivates this work
remains relevant.

The outcomes of this research might contribute to further develop the work conducted by Karen
Adam at EPFL, in her recently published thesis titled ”Timing is Everything” [53]. According to
her own words: “Spikes provide a power-efficient way to encode information and can provide better
sample efficiency in comparison to clocked and synchronous sampling schemes”. Through her ex-
amination of time encoding machines (TEM), which are mathematical models of integrate-and-fire
neurons, Adam provided compelling arguments in favor of asynchronous readout in imagers. These
assertions can be experimentally validated using our windowed readout technique. Specifically, the
statements put forth by Adam include: (1) timing-based spiking devices offer advantages over
traditional uniform sampling in multi-channel encoding by eliminating the need to align clocks; (2)
the asynchrony of spikes across different spiking devices leads to less redundant and more efficient
data, fostering collaborative operations among pixels; and (3) asynchronous readout enables the
entanglement of temporal and spatial resolution in video, allowing for an increase in both aspects
by expanding the number of pixels.

Our technique primarily addresses the second point mentioned above—the concept of group
work between pixels. The principle of group work suggests that pixels that exhibit low spike
rates can be compensated for by other pixels that spike more frequently, but only up to a certain
threshold. Once a pixel effectively characterizes its illuminance using, for instance, 15 spikes,
generating additional spikes (20, 30, or 40) becomes redundant. Therefore, beyond that threshold,
it is more advantageous to have spatially sparse information, meaning that it is preferable to have
more pixels firing, even if each pixel fires less frequently. By decoupling event generation from
readout and leveraging the in-pixel aging storage mechanism, we anticipate being able to capture
spike data from a larger number of pixels in high-illuminance scenarios, regardless of any spikes
that may be missed from more active pixels.

The inclusion of window logic in our approach also provides an opportunity to investigate
another hypothesis regarding the behavior of the pixels. Because the pixels act independently, the
readout queue of spikes occur according to a Poisson process [29], in which the probability that a
certain pixel’s address is communicated is proportional to the light intensity of its area. This is an
interesting property, that Culurciello highlighted in the original paper, where it was noted as the
”the first reported example of a probabilistic APS, where the output activity reflects the statistics
of the scene”.

We aim to test the hypothesis that by employing observation windows to capture spikes, we can
effectively preserve the most relevant aspects of the image by leveraging the Poisson distribution

20 2.3 - Our solution: windowed asynchronous readout

of spikes’ output. This technique has been previously explored within our research group, with
Méndez-Romero investigating it in his Master’s thesis [54] and subsequently publishing a related
study in the 2022 edition of ISCAS [55]. The concept draws inspiration from the quanta image
sensor (QIS), a novel sensor design introduced by Fossum in 2005 [56]. A QIS generates images
by aggregating binary bit planes, where each bit represents the presence or absence of at least
one photoelectron in a photoreceptor. While QIS relies on single photon detection and justifies
its usage of Poisson arrival statistics based on the random nature of photon arrivals, we seek
to experimentally verify whether we can replicate a similar readout scheme in the laboratory by
constructing binary bit planes using the spikes from our octopus pixels.

The proposed reading schemes are illustrated in Fig. 2.8. The sparse readout mode aims to
provide channel access to pixels with low spike frequencies. While fair arbiters could potentially
achieve a similar effect, we believe that this readout scheme is better suited for octopus sensors as
it is expected to minimize motion artifacts. Additionally, we plan to experimentally validate the
quanta-based readout mode, which extends beyond the previous Matlab simulations conducted
by Méndez-Romero. The promising results shown in Fig. 2.9 and Fig. 2.10 motivate further
investigation into its practical applications. A summary of the timing constraints for the sensor’s
internal signals can be found Table 2.2.

Quanta image readout mode

40 60 80 100 120 140 160 180 200

Time (us)

0

0.5

1

1.5

2

V
P1

at 1 nA V
P2

at 300 pA V
P3

at 50 pA V
P4

at 1 pA

40 60 80 100 120 140 160 180 200

Time (us)

0

0.5

1

1.5

2

Window

40 60 80 100 120 140 160 180 200

Time (us)

0

0.5

1

1.5

2

Event P1

Event P2

Sparse readout mode

4 6 8 10 12 14 16 18 20 22 24

Time (us)

0

0.5

1

1.5

2

Event P1 Event P2

4 6 8 10 12 14 16 18 20 22 24

Time (us)

0

0.5

1

1.5

2

Event P96

4 6 8 10 12 14 16 18 20 22 24

Time (us)

0

0.5

1

1.5

2

Window

Figure 2.8: The two readout modes proposed in this work. The octopus sensor we designed imple-
ments a switch to decouple event generation from transmission through a signal called Window.
(Left) The sparse readout mode is based on the works of Karen Adam [53], and will enable us to
scan the events of those pixels in the matrix that are not receiving the attention of the periphery.
(Right) The quanta image mode, based on the sensor conceived by Fossum [55], will use the window
to randomly sample the Poisson process of the spikes produced in the matrix.

CHAPTER 2 - Asynchronous Readout 21

Original image Saturated processed image Quanta processed image

Figure 2.9: Results from the Matlab models developed by Méndez-Romero [54]. In the top, an
example bright image is used to evaluate the saturation in the AER channel and the impact of
quanta-based acquisition. In the bottom, a 3D representation of the spikes in each pixel. In the
original image, the most illuminated pixels have 55000 spikes, whereas its darker parts have around
2000. Roberto used a linear transformation that assigned spiking frequencies between the brightest
and to the darkest pixel. Then, he modeled saturation by comparing the sum of all spikes in the
matrix with the common saturation rate of the AER periphery. If the sum is bigger, he erased
spikes of the less illuminated pixels. Last, he modeled quanta acquisition by dividing the original
image in a cube of binary bit planes, each indicating whether the pixels had spiked at least once,
and randomly eliminated spikes of each plane. The number of spikes is better distributed among
all pixels.

Table 2.2: Temporal Characteristics of our Octopus Sensor

Spike duration Pixel spike frequency range Spike aging Arbiter delay

15 ns 155.92 Hz - 59.19 kHz 334 µs 6.63 ns

22 2.3 - Our solution: windowed asynchronous readout

0
events

events

100

0
events

10

100

0 50 100 150 200 250

0 50 100 150 200 250
10

100

300

Tone mapping curveIllumination levels

Tone mapping curveIllumination levels

Tone mapping curveIllumination levels

Images acquired without Quanta Imaging

Images acquired with Quanta Imaging

ev

en
ts

=
13

81
18

0

100

200

255

ev

en
ts

=
15

92
15

0

100

200

255

0

100

200

ev

en
ts

=
78

27
9

255

ev

en
ts

=
84

65
4

0 50 100 150 200 250
0

100

200

255

Illumination levels Tone mapping curve

events

pi

xe
ls

G
ra

y
le

ve
l

50 100 150 200 250 300 350
10

0 50 100 150 200 250 300
events

0
events

50 100 150 200 250 300 350

G
ra

y
le

ve
l

pi

xe
ls

pi

xe
ls

pi

xe
ls

100

10

events
0 50 100 150 200 250

G
ra

y
le

ve
l

G
ra

y
le

ve
l

events
50 100 150 200 250

Figure 2.10: Results from a quanta-based post-processing using an image adquired by an octopus
sensor [55]. The original images were acquired using an octopus sensor, and are formed by around
150.000 events each. After post-processing, using a window with a uniform distribution and 0.7
average duty cycle to sample the spikes, the images are still recognizable. The result is that each
image can be represented with half the events.For each one of the images, histograms and the
applied tone mapping curves are shown.

CHAPTER 3

Octopus Pixel

This chapter describes the octopus pixel designed and fabricated in a standard 180 nm CMOS
process. Section 3.1 introduces the pixel architecture. After providing a solid theoretical framework
for the acquisition technique with decoupling logic, the sensor is design and send for fabrication.
Section 3.2 provides insight into the most sensible component within the pixel, the comparator,
and its design process. Section 3.3 deals with the in-pixel handshake interface for pixel row and
column arbitration, and event transmission. Finally, Section 3.4 details the resulting layout and
post-layout verifications.

3.1 Introduction

The pixel circuit is portrayed in Fig. 3.1. Its architecture is not novel, as both the light-to-
frequency block and the in-pixel handshake interface have been covered in the literature [30, 57].
But we introduced a modification for decoupling both blocks with an external signal that acts as
a time window for data transmission.

The main circuit in the light-to-frequency conversion block is the comparator. It functions as
a 1-bit ADC, producing a voltage transition at its output when the input analog signal VP crosses
the reference Vbot. This transition triggers a signal to the gate of a PMOS transistor, which resets
the input voltage VP and returns the output to its idle state. We refer to this pulse as a spike or
an event.

The spiking frequency f is affected by the capacitance at P, which acts as a sensing capacitor
with a value given by the parasitic capacitance in the photodiode Cph. Following a first-order
approximation, Cph is discharged at a rate given by the photocurrent Iph following

VP = Vbot ≈ VDD − Iph
Cph

· ∆t (3.1)

where ∆t is the time it takes for VP to cross with Vbot. We can approximate the spiking frequency
as

f ≈ Iph
Cph(VDD − Vbot)

(3.2)

where the parasitic capacitances of the comparator’s input and the dark current have been ne-
glected. In this way, the spiking frequency at the comparator’s output encodes the pixel’s ex-
posure, assuming that the intensity of the light during the integration process is constant. The
comparator continuously changes between the two states in this architecture, behaving like an
astable multivibrator.

23

24 3.1 - Introduction

M1

Δt

PD
Vbot

VP

M2

C1
M3 M4

VDD VDD

M5
M6VSPIKE VMEM

M7

_REQ_X

ACK_YRESET_X

RESET_Y

RES WIN _REQ_Y

RES

VDD

Vbot

ton

VP

WIN

VSPIKE

t

t

t

...

...

...

VMEM

t
...

t

t

_REQ_Y

ACK_Y_REQ_X

RESET_X
RESET_Y

...

...

...

...

...

...

...

...

In-pixel handshake interfaceLight-to-frequency

Figure 3.1: Pixel schematic and signal flow [30]. The incident light is encoded in the frequency of
VSPIKE. Spikes produce a self-reset in the comparator’s input. The circuit implements an integrate-
and-fire neuron model. The in-pixel handshake interface with memory capacity implements the
logic for arbitration between pixels and AER communication. The window decouples spike gen-
eration from communication. Transistor sizes (µm/µm): M1 = 0.24/0.34, M2 = 0.45/0.18, M3
= M4 = 0.24/0.18, M5 = 2/0.18, M6 = M7 = 1.6/0.18. Total transistor count: 37. C = 20 fF.
Discharging time of the capacitance due to current leakage: 336.77 µs.

The rest of the circuit is digital. As seen in Fig. 3.1, the spike is processed by a NOR gate along
with the global reset, to avoid having two PMOS hanging at P which would increase current leaks.
M1 is an I/O transistor (3.3 V). Also, the NOR and the inverter act as a buffer stage, delaying
the reset signal for a few nanoseconds and thus improving the stability of the comparator. The
window logic is implemented with a NAND gate, acting as a shut-off valve governed by an external
signal that disables spike transmission (WIN).

The spikes are transmitted through an asynchronous handshake logic interface, which was
presented in [57]. The pixels in the sensor are arranged in a grid, with each sharing two wired
NORs for sending a request signal through its row and column. C1 stores the event until it gets the
attention of the periphery in a short period, or the event gets discarded. Rows are arbitrated first
(REQ Y). The periphery will answer an acknowledge (ACK Y) to the row that first transmitted
the request, which triggers column arbitration (REQ X). Then, the sensor will transmit the pixel
address (row and column) and wait for an acknowledge signal from the exterior. When received,
reset signals are sent to the pixel (RESET X and RESET Y). M3 and M4 have minimal dimensions.

More details about the behaviour of this logic are provided in Section 3.3 and Chapter 4. Now
that we have covered the basics of the architecture, let’s dive in and describe the performance of
the comparator.

CHAPTER 3 - Octopus Pixel 25

M3 M4

M1

Vin

M2

M5
Vbias

VX

VP

VDD

VO1

VDD

(b)

Vbias

Vout

VDD

(a)

Vout

Vin Vin

VOH VOH

VOL VOL
Vos

Vos

VIL VIH VIL VIH

Vout

M6

M7

Figure 3.2: (a) Transfer characteristic of a comparator considering finite static gain and offset
voltage (left) and hysteresis (right). (b) We use the two-stage comparator with NMOS input.
Transistor sizes (µm/µm): M1 = M2 = 0.67/1.1, M3 = M4 = 1.34/2.2, M5 = M7 = 0.37/0.48,
M6 = 0.3/0.6.

3.2 Two-stage comparator

Comparators are widely used in ADCs. They can be though as decision-making circuits that
sample two analog signals and detect whether one is larger or smaller than the other, codifying
the outcome as a digital signal. The input signals may well be differential voltages or currents, but
their output is usually a voltage.

Voltage comparators are basically voltage gain devices. Therefore, its mechanism to achieve
voltage gain is multiplying a small-signal transconductance gm by a small-signal resistance ro.
Depending on their architecture, we can broadly categorize comparators as open-loop or regen-
erative [58]. Open-loop comparators are used without compensation. A simple implementation
uses an operational amplifier, letting its high gain produce comparator operation between two
saturation levels, along with other stages. Regenerative comparators use positive feedback to built
faster unstable operation with intrinsic hysteresis, and have been extensively used for implement-
ing bistables. For more information about comparator operation and architectures, we suggest the
interested reader to [59].

The DC transfer curve in Fig. 3.2(a) illustrates the behaviour of a comparator. It shows the
effects of two non-idealities: the finite static gain around the input transition point Av and the
input offset voltage VOS. The static gain can be expressed as

AV =
VOH − VOL

VIH − VIL
(3.3)

where VIH − VIL is the static resolution of the comparator. The minimum and maximum values
are given by

VIH = VOS +
VOH + VOL

2Av
(3.4)

and

VIL = VOS − VOH + VOL

2Av
(3.5)

For any input level inside this range, the digital output state is uncertain.

A relevant feature in comparators, particularly useful in noisy environments, is hysteresis. This
quality is the variation of the input threshold as a function of the output level due to the circuit’s

26 3.2 - Two-stage comparator

CL

M4

M2

VO1

VO1

signal path

M3 M4

M1

Vin

M2

M5
Vbias

VX

VP

VDD

Fixed
VoltageVO1

V+
in

VDD
VDD

V+
in

V-
in

t

t

t
VP

IM2≈IM4

(a) (b) (c)

Figure 3.3: (a) Large-signal analysis of the first stage of the comparator, with the two signal
paths affecting the single-ended output. Note that Vin polarity respect to a 5-T OTA depiction is
reversed, as the second stage of the comparator inverts the output. (b) The V +

in signal path can
be studied as a NMOS common source amplifier. (c) Influence of Vin in Vo1 and in the current of
the right branch.

inertia. The DC transfer curve considering hysteresis is also seen in Fig. 3.2(a). Depending on the
comparators topology, the static gain in each transition —that is, the slope in the transfer curve—
may differ.

In our design, we opted for the simple open-loop, two-stage comparator in Fig. 3.2(b). This
topology is a two-stage Miller OP-AMP without compensation that uses a NMOS input pair.
Because reducing the current consumption is a major concern, we biased the circuit to keep all
transistors operating at weak inversion. Both design choices fit perfectly well for reducing the
number of transistors in the pixel. Unfortunately, these also have a negative impact on speed.
The next few sections are dedicated to analyzing the two stages of the comparator and its design
process.

3.2.1 Differential pair with active load

The differential pair has a current mirror as an active load, implementing a simple 5-T OTA
which serves as a single-ended gain stage. This topology has been around for decades, at first
implemented with bipolar technologies. One particular feature is that the current mirror is not
used for biasing purposes, but it processes signals from the differential pair. Also, the stage is not
symmetric, because M3 is diode-connected and M4 is not, greatly affecting the properties of the
circuit. Moreover, the topology contains two signal paths with different transfer functions.

These two dynamics determine the output voltage at the same time: (1) a decrease (increase)
in V +

in causes M2 to draw less (more) current, which elevates (lowers) the output voltage —consider
M2 and M4 as a NMOS common source amplifier—, and (2) an increase (decrease) in V −

in augments
(reduces) the current through M1, which is copied to M4 and thus rises the output voltage —then
again, consider M4 and M2 as a PMOS common source amplifier—. Therefore, both signal paths
demand the output voltage to go up (or down). Because all transistors should be well-matched,
the DC current flowing through all transistors is the same and equal to half the bias current.

The two paths enhance each other in Vo1. Note that they also have opposite effects on IM2.
These influences collapse when the differential input Vin becomes negative, so Vo1 increases enough
to make VSD,M4 < VSG − Vth, M4 leaves saturation and IM4 is no longer the copy of IM3. For a
moment, IM2 is determined by Vo1 − VP. Because the PMOS load voltage drop is close to zero,

CHAPTER 3 - Octopus Pixel 27

r3
' ro4

ro1 ro2

gm1v1 gm2v2
v1 v2

gm4vX

vX vo1
vbot vP

v3

vRe

(a) (b)

M3

gm3v3

ro3
gmbvbs

vPui2

i1 i3

iRe

Figure 3.4: (a) Small-signal circuit of the comparator’s first stage. Although Vbot is a constant DC
reference, we include its AC component for the calculation procedure. (b) Small-signal equivalent
of a diode-connected PMOS.

Vo1 is equal to VDD. Eventually, both M2 and M4 are cut off. In any case, the V −
in signal path

does not have to be considered when using the circuit as a comparator, as it only processes the
DC reference Vbot.

With this configuration, the lower limit of Vo1 (when V +
in > V −

in) is limited by the almost invari-
able VP —mostly determined by the current source M5 and the common mode input voltage—,
because VDS,M2 = 0 and cannot sink Vo1 further. Also, when Vo1 is high (V +

in < V −
in), VP cuts off

M2 because VGS,M2 < 0. The second stage will widen the output range.

Besides the large-signal behavior description, it is interesting to analyze the small-signal proper-
ties of the comparator, since many of its parameters are a function of how the comparator amplifies
when operating in the linear region; that is, when the differential input is around zero. Fig. 3.4(a)
shows the small-signal equivalent circuit. Note that the diode-connected PMOS, shown in Fig.
3.4(b), behaves like a small-signal two-terminal resistor with value

(gm3 + gmb3)vRe +
vRe

ro3
= iRe −→

vRe

iRe
= r′3 =

1

gm3 + gmb3 + r−1
o3

=
1

gm3 + gmb3

∥ ro3 (3.6)

which can be approximated as

r′3 ≈ 1

gm3

(3.7)

When small differential inputs are applied, the swings in Vo1 and Vx are vastly different. This
is because the diode-connected device M3 yields a much lower voltage gain from the input to O1
than that from the input to X. As a result, the effects of vo1 and vx at P (through ro1 and ro2,
respectively) do not cancel each other, and this node cannot be considered a virtual ground.

To find the small-signal gain, we start by assuming that, because P is not grounded, the currents
i1, i2 and i3 are equal

i1 = vxgm3 = i2 = i3 (3.8)

Kirchhoff’s current law (KCL) at O1 yields

vxgm3 +
vo1
ro4

+ gm4vx = 0 −→ vx =
−vo1

ro4(gm4 + gm3)
(3.9)

and
vo1 − vP

ro2
+ gm2v2 − vxgm3 = 0 (3.10)

KCL at X yields
vx − vP

ro1
+ gm1v1 + vxgm3 = 0 (3.11)

28 3.2 - Two-stage comparator

Considering that pairs of transistors M1-M2 and M3-M4 are matched with equal W/L ratios,
and that input voltages follow

vbot − v1 = vP − v2 = vPu (3.12)

we can write
vx − vo1

roN
− gmN(vP − vbot) + 2vxgmP = 0 (3.13)

where the subindex N and P refer to NMOS and PMOS, respectively.

Substituting the value of vx in Eq. (3.13) with that obtained in Eq. (3.9)

gmN(vP − vbot) = −vo1

(
1

2roProNgmP

+
1

roN
+

1

roP

)
(3.14)

We can neglect the influence of the first term in the right-side sum. Therefore, the small-signal
voltage gain at low frequencies is approximately

AV1 = −gmN(roN ∥ roP) = − gmN

gdsN + gdsP
(3.15)

The negative sign is related to how we consider inverting and non-inverting inputs during the
analysis. Remember that the second stage inverts the output. Because we can also compute
the voltage gain as the product between the short-circuit transconductance Gm and the output
resistance Ro1, we get

Gm = gmN (3.16)

and
Ro1 = (roN ∥ roP) (3.17)

A more detailed analysis of these expressions can be found in [60, p. 152].

The frequency response of the circuit is also worth to consider. There are two poles of interest:
(1) at X, referred as the mirror pole, with a capacitance Cx equal to the sum of Cgd1, Cgd4, Cgs3,
Cgs4, Cdb3 and Cdb1, and (2) Co1 accounting for Cgd2, Cgd4, Cdb2, Cdb4 and CL. The mirror pole
is typically much higher in magnitude than the output pole, an assumption that can be easily
justified by considering that the small-signal resistance at X is approximately 1/gm3, much smaller
than the resistance at O1.

Then again, a detailed analysis of the frequency response of the circuit was done by Razavi [60,
p. 201], resulting in the following expressions for both poles

ωp1 ≈
1

(roN ∥ roP)Co1
=

gdsN + gdsP
Co1

(3.18)

and
ωp2 ≈

gmP

Cx
(3.19)

3.2.2 Common-source amplifier

As we mentioned earlier, the signs of the input terminals we consider for the comparator are the
inverse of those traditional assigned to a 5-T OTA. The second stage is a current-sink inverter,
producing a positive gain in the comparator.

This PMOS common-source amplifier converts the changes in its VSG to a small-signal drain
current, which passes through a NMOS load to generate an output voltage. The NMOS load,
therefore, acts as a current source that provides a path to ground to the bias current flowing

CHAPTER 3 - Octopus Pixel 29

Vbias

Vout

VDD

M6

M7

Cgb Cgd(1-AV2)

vO1
Cgs

v6

v7

VO1

gm7v7

gm6v6
ro6

ro7

(a) (b)

Vout

Figure 3.5: (a) Small-signal equivalent circuit of the common-source amplifier. (b) High-frequency
model of the stage with Miller’s approximation.

through the PMOS transistor, while also providing a large load impedance with a small voltage
drop. Furthermore, this stage has a large input impedance.

The small-signal model of the stage can be seen in Fig. 3.5(a). KCL at VOUT yields

gm6Vin +
Vout

ro6
+

Vout

ro7
= 0 −→ AV2 = −gm6(ro7 ∥ ro6) = − gm6

gds6 + gds7
(3.20)

This stage has one pole located at

ωp3 =
gdsN + gdsP

Cout
(3.21)

where Cout is the sum of CgdN, CgdP, CbdN, CbdP and CL. Fig. 3.5(b) shows the high-frequency
model of the stage, with Miller’s approximation for studying the equivalent capacitance at its
input. The capacitances shown have a strong influence in the location of the pole ωp1, which is the
dominant pole of the system.

3.2.3 Characterization

We define the propagation delay of the comparator as the time required to switch the state of its
output when the input signal has crossed the comparison value. In our design, this value is limited
by the comparator’s slew rate, and follows the expression

∆to1 = Co1
∆Vo1

Ibias/2
(3.22)

for the output of the first stage, in which ∆to1 is measured between the steady value and the
threshold point, or trip point, of the second stage. Also, for the output of the second

∆tout = Cout
∆Vout

Ibias
(3.23)

The resulting rising and falling delay is the sum of both.

Our application is required to have a low-power supply, thus the operation at 1.8 V and weak-
inversion. We consider all transistors to be saturated in common mode.

A simple expression for the low-frequency gain is obtained from Eq. (3.15) and Eq. (3.20)

AV =
gm2

gds2 + gds4
· gm6

gds6 + gds7
(3.24)

30 3.2 - Two-stage comparator

where subscripts refer to transistors at each stage.

Our design process starts by selecting drain currents, inversion coefficients IC, and channel
length L for desired tradeoffs in performance [61]. An overview of such process is available in
Annex. Considering weak-inversion operation, we obtain

AV =
VA2VA4VA6VA7

n2U2
T(VA2 + VA4)(VA6 + VA7)

(3.25)

Early voltages VA are a function of transistors L and IC, thus the only variables we as designers
have to control the low-frequency gain when devices are set to work on weak-inversion [58, p. 398].
VA values as a function of IC and L can be found in [61, p. 153].

To calculate the location of poles, we ought to determine the value of the capacitances at CO1

and COUT. Following the expressions

Co1 = Cgd2 + Cgd4 + Cdb2 + Cdb4 + Cgd6 + Cgs6 (3.26)

and
Cout = Cgd7 + Cgd6 + Cdb7 + Cdb6 + CL (3.27)

Values for Cgd are proportional to 0.94 fF/µm in NMOS and 0.64 fF/µm in PMOS for a 180 nm
process, following the parameters provided in [61, p. 45]. Besides, Cdb follows

Cdb = W

(
1

2
WDIFCJC

′
J + CJSWC ′

JSW

)
(3.28)

where C ′
J and C ′

JSW are reduction factors for Vdb [61, p. 177]. In any case, considering the Miller
effect for Cgd6 and neglecting parasitics limited to a few fF, we get

Co1,eq = Cgd2 + Cgd4 + Cdb2 + Cdb4 + Cgs6 + Cgd6(1 −AV2) (3.29)

and
Cout ≈ CL (3.30)

We neglect the influence of ωp2 and ωp3 because they are far from the dominant pole.

3.2.4 Design

The comparator performance is crucial in our application. Its gain, bandwidth, offset and current
consumption will determine the behaviour of the pixel. It should be notice that the feedback does
not allow the output to move between rails, as the spike produces the reset in the comparator’s
input before its output saturates.

Based in the group’s experience, the photodiode in our design will not produce currents higher
than 1 nA. As shown later, this current is encoded in a frequency of 83.33 kHz following Eq. (3.2).
But peak values like this are rare in normal conditions. Therefore, we design the comparator
seeking to reach a cutoff frequency f-3dB = 10 kHz and a DC gain AV = 70 dB. Here are the steps
of the design process:

1. Determining the bias current from a selected propagation delay time for a slewing
response. As mentioned earlier, the propagation delay in both edges is calculated separately
for the two stages. We will approximate the input threshold of the second stage in Eq. (3.22)
as half the swing at Vo1, which is limited by VDD and VP. Because it is located at the
midpoint, the rising edge has the same value as the falling edge

∆to1 = Co1
VDD − VP

Ibias
(3.31)

CHAPTER 3 - Octopus Pixel 31

For the second stage, the voltage swing occupies the two rails. Therefore

∆tout = Cout
VDD

Ibias
(3.32)

The total delay will be the sum of both. A first approximation to the value of the parasitic
capacitances yields

Co1 ≈ 2 fF (3.33)

and
Cout ≈ CL ≈ 15 fF (3.34)

Using Eq. (3.2) with a maximum current of 1 nA, Cph = 15 fF, VDD = 1.8 V and Vbot = 1.0 V,
we obtain a maximum spike frequency of 83.33 kHz, that is, a period of 12 µs. We want to
keep the propagation delay at around 5% of this value, ∆tout ≈ 0.6 µs.

From Eq. (3.31-3.34), and approximating VP ≈ Vbot − VthN we obtain

Ibias ≈ 50 nA (3.35)

2. Sizing current sources from the bias current and weak-inversion operation. Fol-
lowing the procedure explained in Section [previous section Binkley], we use the drain current,
the IC and the channel length as the three independent design variables. We already approx-
imated the bias current of the comparator, so we are in a position where we can calculate
the dimensions of M5 and M7.

The IC value for weak-inversion operation is 0.1 [61, p. 54]. Therefore, considering the
technology current I0 is 0.64 µA for our 0.18 µm process we obtain

W5,7

L5,7
=

ID
I0 · IC

=
50 nA

0.64 µA · 0.1
= 0.78 (3.36)

There is a relevant tradeoff regarding the selection of L, which involves gain, bandwidth, size
and ID dependency with respect to VDS. We seek to maximize both gain and bandwidth,
while keeping the last two as low as possible. The ID dependency is given by the Early
voltage VA. Assuming VDS will be around 0.5 V, we can use the values from [61, Fig. 3.45].
With a VA equal to 10, we obtain a value of L5,7 = 0.48 µm, and thus

W5,7 = 0.37 µm (3.37)

3. Sizing the common-source amplifier. This stage behaves as an inverter: its trip voltage
can be changed by varying the width of its transistors. By reducing the width of the NMOS
in proportion, the midpoint is moved lower in its transfer voltage characteristic [62, p. 181].
Therefore, M6 has a slightly smaller width than M7

W6 = 0.30 µm (3.38)

Whereas we want to increase M6 ratio to improve the stage gain, as expressed in Eq. (3.20),
we must also be aware of systematic offset and its impact on M6 ratio.

4. Sizing the PMOS current mirror so that systematic offset is eliminated. To ensure
there is no inherent input-offset voltage present in the comparator, certain conditions must
be meet [63, p. 252].

When the differential input voltage is null, the output of the first stage Vo1 must ensure that
VSG6 makes I6 equal to I7

VSG6 = ln

(
ID7

I0W6/L6

)
· n · UT + VT (3.39)

32 3.2 - Two-stage comparator

It is clear that VSG6 = VSD4. Without the offset presence, the first stage should be balance
when the input difference is null, so VSD4 = VSD3, and thus VSD3 = VSG3 = VSG4. We can
express this last voltage as

VSG4 = ln

(
ID5/2

I0W4/L4

)
· n · UT + VT (3.40)

Considering these equations and the results from step 2, it yields

ID5/2

W4/L4
=

ID7

W6/L6
−→ W6

L6
= 2

W4

L4
(3.41)

This simple analysis ensures offset voltages in the order of a few mV. Also, offset is conditioned
by mismatch between transistors, which is known to be inversely proportional to

√
WL.

These constraints allow us to start performing simulations with our design, in order to fine-
tune the dimensions of the transistors.

5. Sizing all transistors for keeping mismatch as low as possible, without occupying
too much area. With the help of Cadence, we will design the comparator with a target
input offset specification using the numerical relationships we have considered until now.

We perform a DC analysis, which finds the bias point of all devices. By connecting the
comparator in a buffer configuration (with negative feedback and a common-mode input
signal), we obtain at the output the value of the input-referred offset. Mathematically, this
is justified by

Vout = A0(V + − V −) = A0(VCM + VOS − Vout) −→ Vout =
A0

1 + A0
(VCM + VOS)

≈ VCM + VOS

(3.42)

The common-mode input signal will be the comparison voltage reference Vbot. Offset sources
are the systematic offset, as expressed in Eq. (3.41), and mismatch between transistors. To
study its influence, we configure a Monte Carlo simulation, a simple method of variability
analysis useful for simulating the random results of the manufacturing process. After a Monte
Carlo analysis, the variable is represented in a histogram and its standard deviation σ.

We design the comparator to reach a σ value of around 6 mV at Ibias = 50 nA. Also, we need
to minimize the input capacitance of the differential pair, as this parasitic will be added to
Cph. The results can be seen in Fig. 3.6. The contribution to mismatch is distributed among
M1 (45%), M2 (40%), M3 (8%) and M4 (6%). The transistors’ dimensions are shown in Fig.
3.1. The resulting gate capacitance of M3 and M4 is 3.92 fF. All aspect ratios and currents
ensure weak-inversion operation.

CHAPTER 3 - Octopus Pixel 33

1.48 1.485 1.49 1.495 1.5 1.505 1.51 1.515 1.52

Output voltage (V)

0

100

200

300

400

500

600

N
u
m

b
e
r

o
f
s
a
m

p
le

s

Number = 300

Mean = 1.50 V

Std. Dev. = 6.66 mV

Histogram of the offset voltage testbench in a 300 samples Monte Carlo simulation

Figure 3.6: Histogram and its corresponding probability distribution for the output voltage in
the offset Monte Carlo testbench, with Ibias equal to 50 nA. The output contains the common-
mode value Vbot = 1.5 V and the offset, which is represented by the standard deviation value
σ = 6.66 mV.

The input offset voltage is a property of the comparator in an open-loop configuration, caused
by the mismatch between transistors. The comparator’s offset is a crucial metric in image
sensor design since its presence is related to Fixed Pattern Noise (FPN). If adjacent pixels
have slightly different transition voltages, they will codify the same illuminance with different
frequency values, degrading the image. It is common practice to limit the offset at 5% of the
comparison value.

6. Verify open-loop gain, bandwidth and transition point. We can measure the small-
signal characteristics of the open-loop comparator in a simulation with a simple testbench, in
which we connect a high-value RC feedback to the negative input. The Bode plot is portrayed
in Fig. 3.7. Using the analysis we did in the previous section we can verify the results and
check whether the simulation values are in accordance with the theoretical expressions. In
order to find the pole location and gain, we first perform the following calculations

gm6 =
Ibias
nUT

= 1.29 µA/V

ro6 =
VA6

Ibias
= 283.8 MΩ

ro7 =
VA7

Ibias
= 53.78 MΩ

Cgd2 = 0.64 · 0.67 = 0.43 fF

Cgd4 = 0.94 · 1.34 = 1.26 fF

34 3.2 - Two-stage comparator

Cdb2 = 0.67 · (
0.6 · 0.96 · C ′

JN

2
+ 0.27 · C ′

JSWN) = 0.29 fF

Cdb4 = 1.34 · (
0.6 · 1.2 · C ′

JP

2
+ 0.24 · C ′

JSWP) = 0.57 fF

Cgs6 = 0.94 · 0.3 = 0.28 fF

Cmiller6 = Cgd6(1 −AV2th) = 0.94 · 0.3(1 + gm6(ro6 ∥ ro7)) = 16.69 fF

CO1,eq = 19.52 fF

and thus from Eq. (3.18) we find
ωp1 = 79.6 kHz (3.43)

and Eq. (3.25) yields
AV = 70.62 dB (3.44)

Several parameters have been taken from [61], which probably are not the same as those of
the technology of the design (UMC180). This reason justifies the slight differences between
the results in Fig. 3.7 and the theoretical ones. In any case, they are precise enough to be
considered a good approximation.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

0

20

40

60

G
a

in
 (

d
B

)

AC response of the comparator in open-loop

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Frequency (Hz)

-200

-150

-100

-50

0

P
h

a
s
e

 (
D

e
g

)

Figure 3.7: Magnitude and phase in a corner AC analysis of the open-loop comparator, without the
reset feedback. For nominal values the DC gain is 66.78 dB and the pole is located at 47.11 kHz.
We define the process corners at -40 ºC and 85 ºC for fast-fast (FF), slow-slow (SS), fast-slow
(FS), and slow-fast (SF) transistor models.

7. Verify peak currents and common-mode response. In a DC analysis, the pixel de-
mands 135.0 nA when differential input is large and 12.46 µA in common-mode. We are also
interested in current peaks, which can be found by performing a transient simulation of a
cluster with four pixels and their respective periphery circuit (its details are described in

CHAPTER 3 - Octopus Pixel 35

Section 4). When transmitting an event, a pixel consumes 136.04 µA, and its comparator
just 0.89 µA. The entire cluster and its periphery draws 1.87 mA at that time, although this
number will increase as the periphery digital circuitry escalates with the number of pixels.

It is also worth to verify the correct behaviour of the PMOS reset transistor under two
conditions. First, we want to evaluate its leak current when turned off. For values between
VDS = 0.8 V and VDS = 1.8 V, the leak current ranges 0.80 pF and 1.80 pF. These are only
relevant when working at low-light conditions. To minimize its impact, we can increase Vbot.

Secondly, when the transistor is on it might produce a significant voltage drop if its current
is too high. Considering Iph = 200 nA, the voltage drop is 7 mV, which should not cause any
trouble. With these verifications, we demonstrate that our comparator reaches the desired
specifications with a safe and energy-efficient operation.

8. Verify spiking frequency variations in the looped comparator due to mismatch.
The main purpose of spiking luminance sensors is to codify a photocurrent value in a fre-
quency of voltage pulses, following Eq. (3.2). However, mismatch make the same photocur-
rent to be transformed into a range of frequencies, resulting in FPN. Mathematically, this is
justified by considering that mismatch produces an input-referred offset, adding a contribu-
tion to Vbot and moving the comparison point, as seen in the simulations below. Although
we tried to minimize offset, its impact is unavoidable.

0.98 0.985 0.99 0.995 1 1.005 1.01 1.015 1.02

Vbot + Voffset (V)

0

200

400

600

800

1000

1200

N
u

m
b

e
r

o
f

s
a

m
p

le
s

Number = 300

Photocurrent = 2 pA

Mean = 1.00 V

Std. Dev. = 6.03 mV

Variations in Vbot due to the input-referred offset voltage in a Monte Carlo simulation

0.975 0.98 0.985 0.99 0.995 1 1.005 1.01 1.015 1.02 1.025

Vbot + Voffset (V)

0

200

400

600

800

1000

1200

N
u

m
b

e
r

o
f

s
a

m
p

le
s

Number = 300

Photocurrent = 800 pA

Mean = 0.99 V

Std. Dev. = 6.55 mV

Figure 3.8: Histogram of Vbot with two different photocurrents in a Monte Carlo simulation. The
variations are the effect of mismatch. The displacement to the left is produced at high frequencies.
The comparison point is set at 1 V.

36 3.2 - Two-stage comparator

150 152 154 156 158 160 162

Spiking frequency (Hz)

0

500

1000

N
u

m
b

e
r

o
f

s
a

m
p

le
s

Number = 300

Photocurrent = 2 pA

Mean = 155.92 Hz

Std. Dev. = 1.99 Hz

Variations in the spiking frequency in a Monte Carlo simulation

56580
57080

57580
58080

58580
59080

59580
60080

60580
61080

61580
62080

62580
63080

Spiking frequency (Hz)

0

500

1000

1500

2000

N
u

m
b

e
r

o
f

s
a

m
p

le
s

Number = 300

Photocurrent = 800 pA

Mean = 59.19 kHz

Std. Dev. = 1.08 kHz

Figure 3.9: Histogram of the spiking frequency of a pixel with two different photocurrents in a
Monte Carlo simulation. Same conditions as above.

The Matlab models in Annex allow us to evaluate if noise is present with the measured
frequency variations. Fig. 3.10 shows no major differences between both images, and no
visible noise.

Figure 3.10: (Left) Original test image in greyscale. (Right) Test image after adding random
frequency variations with the achieved standard deviation.

The comparator reaches a switch time of 60 ns, as seen in Fig. 3.11. An inverter at the
output of the comparator buffers the signal. The dynamic of the feedback reset is faster than
the signal transition, and thus it is not able to reach the top supply rail. In any case, the
signal is strong enough to transmit the spike to the next stage.

CHAPTER 3 - Octopus Pixel 37

19 19.1 19.2 19.3 19.4 19.5 19.6 19.7 19.8 19.9 20

1.4

1.6

1.8
V

o
lt
a
g
e
 (

V
)

Integrated voltage in the photodiode

19 19.1 19.2 19.3 19.4 19.5 19.6 19.7 19.8 19.9 20
0.5

1

1.5

2

V
o
lt
a
g
e
 (

V
)

Output of the comparator

19 19.1 19.2 19.3 19.4 19.5 19.6 19.7 19.8 19.9 20

Time (us)

0

0.5

1

1.5

V
o
lt
a
g
e
 (

V
)

Spike

Comparator behavior with feedback reset, Vbot = 1.4 V

Figure 3.11: Transient simulation characterizing the behavior of the comparator. The fall time is
60 ns and the rise time is 15 ns.

3.3 In-pixel handshake circuit

The asynchronous event-reading scheme is implemented with a 4-phase handshaking protocol.
As we explained in Section 2.2, this occurs at three different system levels, which from
bottom-up are (1) the pixel row arbitration, (2) the pixel column arbitration, and (3) the
communication of pixel’s address between the AER sender and receiver. In the first and
second processes, the request is implemented with circuits in the pixel, as seen in Fig. 3.1.
This architecture was described in [57], and uses a couple of NMOS for global reset and pixel
reset after readout, a MIMCAP for holding the spike during a few microseconds, a buffer
stage, and the request logic. The receivers, which send the acknowledge back to the pixels,
are the arbitrators located in the periphery. The behavior of this logic, working along with
the window signal, is represented in Fig. 3.16.

Our design uses a row-column arrangement, with pixels in the 2D matrix sharing the request
and acknowledge lines in both dimensions. When a pixel generates an event, it sends a
request signal to the arbiter tree in the periphery through a wired-NOR. This occurs for the
request lines in rows and columns. But it is not the case for acknowledge lines, which are
shared among pixels but are not wired-NORs. These acknowledge lines are the ones that
connect to the encoder, where the address of the pixel that produced the event is generated.
Because addresses are encoded and transmitted serially, this whole scheme is classified as a
word-serial protocol.

The wired-NOR circuit has several electrical constraints [46]. These limit the size of the
sensor, as an increase on rows or columns might produce critical timing issues in the wired-
NORs. The resolution of our sensor is 96x64 pixels, which is small enough to avoid any
inconvenience. Nevertheless, this circuit must be designed cautiously if we want to achieve
proper behavior.

38 3.3 - In-pixel handshake circuit

...

...

...

VDD VDD

MPU

MPD,1

ROUT,1 ROUT,N

MPD,N

COUT,1 COUT,N

RGND,1 RGND,N

REQ
MPU

MPD,1

RLINE

CLINE

_REQ

VPU VPU

SPIKE1 SPIKEN

(a)

Pixel Array

Periphery
(Sender)

(b)

SPIKE1

Figure 3.12: (a) Wired-NOR circuit implemented in the pixels’ rows and columns, and the sender
block in the periphery (the circuits in the sender are explained later). Cout and Rout represent the
drain capacitance, the line crosstalk, the output resistance and the line resistance, respectively.
(b) Equivalent circuit of the wired-NOR, neglecting the influence of ro and RGND. MPD=2/0.18,
MPU=18/0.7, Rline=235.6 Ω and Cline=600.1 fF.

3.3.1 Estimating the line impedance

Dimensions of M5, M6, and M7 from Fig. 3.1 must be able to pull down the request line
when an event is produced. The implementation of the wired-NOR in the request line and
its equivalent circuit is seen in Fig. 3.12(a) and Fig. 3.12(b). The PMOS at the end of the
line works in the triode region, implementing a pull-up current source.

We can neglect the influence of the output resistance ro of all NMOS, since they operate in
strong inversion and their values are above hundreds of kΩ. Therefore, we are left with a RC
network with a current source at one edge. The impedance of the line affects the pull-down
time constant τ and the worst-case scenario occurs when an event is produced in the last
pixel of a row array, that is, the furthest from the periphery circuits.

We should note that, following Elmore’s delay model, the capacitance is always the same,
regardless of which pixel tries to pull-down the line. But the resistance is not, and that is why
we consider the most distant pixel. In that scenario, and neglecting the ground resistance
RGND, the pull-down time can be expressed as

τ = (1 + 2 + 3 + ... + N)Rline(Ccross + Cdrain) =
N(N + 1)

2
Rline(Ccross + Cdrain)

≈ N2

2
Rline(Ccross + Cdrain)

(3.45)

where N is the number of pixels in the array. We neglected the capacitance and the resistance
associated with the pull-up transistor because its impact is much smaller than that of the
array. This equation highlights the importance of producing a good layout, as the values of
Rline and Ccross depend on the width and length of the metal line, in the first case, and the
crosstalk with other metal lines in the second. It also reinforces the idea that the 2D matrix
with wired-NORs is not compatible with high resolution imagers.

However, Eq. (3.45) does not give us an exact expression on the time it takes for the line
to switch logic. This time is also strongly influenced by the drain current of the pull-up and
pull-down transistors, which is a function of their operating regions and dimensions.

Transistor sizes are studied in a simple Cadence simulation of the circuit shown in Fig.
3.12(b). We did this analysis considering the extracted parasitic values of the layout, since it

CHAPTER 3 - Octopus Pixel 39

is a common practice in analog design to modify the circuit after post-layout verification. The
value of Rline is given by the sheet resistance of the M4 layer (a parameter of the technology,
in our case 62 mΩ/µm2) times the relation between the length of the line and its width

Rline = RS
L

W
= 62 mΩ/µm2 · 1900 µm

0.5 µm
= 235.6 Ω (3.46)

Also from the extracted layout we obtain Ccross = 611 fF. It is worth to check the capacitance
of the column-request line (377.23 fF), as we need to dimension that line too. The drain
capacitance of transistor M5 (2 µm/0.18 µm) is found with a DC analysis in cut-off with
VDS = 1.8 V. The value is 2.35 fF, which multiplied by the 95 transistors of the row yields
222.87 fF. Thus, the resulting capacitance in REQ Y is approximately 600.10 fF.

With these values, we simulate in Virtuoso and obtain a high-to-low transition —the time
it takes for the output to reach 50% of its value after a pixel spike crosses the same value—
of 569.9 ps, and a low-to-high transition of 2.89 ns. The fall and rise times are 1.40 ns and
5.53 ns. These values, seen in Fig. 3.13 can be tuned by changing the gate voltage of the
pull-up PMOS. The request lime is limited at 0.092 V in its logic 1, since the PMOS is never
cut-off. Thus, when sending a request signal there is a current consumption of 177.01 µA.

In the next section, we provide details of the layout and the postlayout verifications performed
at the pixel level. Although the circuits in the periphery are presented in the next chapter,
it is worth to consider the behaviour of the pixel with the periphery implemented, for the
sake of clarity. Fig. 3.14 shows the signal flow in the handshake asynchronous protocol for
a cluster of four pixels with different photocurrents. In Fig. 3.15 we can clearly understand
the behavior of pulse-frequency modulation in octopus sensors.

0 5 10 15 20 25 30 35 40 45 50

Time (ns)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

V
o

lt
a

g
e

 (
V

)

Wired-NOR of a pixel row

_REQ_Y (line end)

SPIKE

Figure 3.13: Transient simulation of the circuit in Fig. 3.12(b), implementing a wired-NOR in a
row of 95 pixels.

40 3.3 - In-pixel handshake circuit

Figure 3.14: Handshaking protocol in a transient simulation for a cluster of four pixels, with two
transmitted spikes. First, the voltage VP in the input Cph capacitance decreases until it reaches the
comparison value Vbot. The output of the comparator resets VP to VDD. The spike at t = 105 µs
is transmitted if it occurs while WINDOW is high. The spike generates the REQ X<0>, which
is answered by the row arbiters with a ACK X<0> and RESET X<0>. Then, REQ Y<0>
produces BUS REQ and RESET Y<0>; the sensor (AER transmitter) sends its address to a
external processor (AER receiver), while the spike stored in the pixel is terminated.

CHAPTER 3 - Octopus Pixel 41

0 50 100 150 200 250 300 350 400 450 500
0

200

400

600

800

P
h

o
to

c
u

rr
e

n
t

(p
A

)

0 50 100 150 200 250 300 350 400 450 500
0.8

1

1.2

1.4

1.6

1.8

2

In
te

g
ra

ti
n

g
 v

o
lt
a

g
e

 (
V

)

0 50 100 150 200 250 300 350 400 450 500

Time (µs)

0

0.5

1

1.5

2

S
p

ik
e

s
 (

V
)

Photocurrent values are codified in a range of frequencies

Figure 3.15: Transient simulation with a sinusoidal input photocurrent being codified in spikes at
different frequencies.

42 3.4 - Layout

The window hides spikes, which are stored in the pixel for 0.33 ms

200 300 400 500 600 700 800 900 1000 1100 1200
1.2

1.4

1.6

1.8

In
te

g
ra

ti
n
g
 v

o
lt
a
g
e
 (

V
)

200 300 400 500 600 700 800 900 1000 1100 1200
0

0.5

1

1.5

2

W
in

d
o
w

 s
ig

n
a
l
(V

)

200 300 400 500 600 700 800 900 1000 1100 1200
0

0.5

1

1.5

2

In
v
e
rt

e
d
 s

p
ik

e
s
 (

V
)

200 300 400 500 600 700 800 900 1000 1100 1200
0

0.5

1

1.5

2

In
-p

ix
e
l
m

e
m

o
ry

 (
V

)

200 300 400 500 600 700 800 900 1000 1100 1200

Time (µs)

0

0.5

1

1.5

2

W
ir
e
d
-N

O
R

 r
e
q
u
e
s
t
(V

)
Integrating Voltage Window Spike In-pixel Memory Pixel request

Figure 3.16: Transient simulation to represent the window masking capability, in conjunction with
its in-pixel memory. Events are stored for 334.44 µs before they are discarded due to current
leakage. Spikes and requests use active-low logic in the in-pixel handshake protocol.

3.4 Layout

The layout process for a pixel in our octopus sensor begins with the arrangement and organi-
zation of the circuit we had previously designed. The pixel’s biggest block is the comparator,
formed by seven transistors, which should be located near the photosensitive area. This

CHAPTER 3 - Octopus Pixel 43

photosensitive area is located in the corner of the pixel, as we will form a cluster with four
mirrored identical pixels so that N-WELLs are easily shared. This allows for a more compact
layout, as DRC rules are more easily followed with such arrangements. We seek to maximize
the PN junction that constitutes the photodiode, which is expressed by the fill factor. The
layout process plays a crucial role in ensuring that each pixel performs its intended function
accurately and reliably.

Figure 3.17: Layout of a pixel cluster, showing the NWELL, PPLUS and active layers. Pixels in
the cluster share the NWELL, as well as with their neighbors. PWELL is connected to ground in
every cluster. By seeing the active areas we can interpret the arrangement of the transistors.

We used metal layers M1 and M2 for routing the internal wires of the pixel. We use minimum
widths (0.24 µm and 0.28 µm) whenever the layout forces us to be more compact and we
do not care about the path resistance and wider routes for paths which should minimize
resistance and have no other paths around that would increase parasitic capacitance due to
crosstalk. M3 and M4 are used for those paths that cross the entire matrix. These must
be laid cautiously, as these signals are a source of digital crosstalk noise which can impact
the behavior of the wired-NORs. In those metal layers, wires’ widths are 0.5 µm and 0.6 µm,
spaced with sufficient distance to minimize crosstalk.

We designed a test pixel, located in the location (64,96), to be able to measure the input and
output of the comparator outside the array. These are connected to an analog buffer and a
digital buffer, respectively. Polarizations and voltage references are all generated outside the
chip.

44 3.4 - Layout

Figure 3.18: Layout of a pixel. We achieved a pixel pitch of 18.63 µm x 12.38 µm, and a fill factor
of 47.5%. The corners of the photodiode are chamfered. M6 and M5 layers are used for power
supply, ground and MIMCAP. M4 and M3 are used for routing signals that cross the pixel matrix.

CHAPTER 3 - Octopus Pixel 45

Figure 3.19: Layout of a cluster with four pixels. Pixels have a mirror disposal to facilitate the
fulfillment of design rule checks (DRC) and achieve a more compact arrangement.

46 3.4 - Layout

 8
40

.3
2

µ
m

 1860. 48 µm

Figure 3.20: Layout of the pixel matrix with a 96 x 64 resolution.

CHAPTER 4

AER Periphery

This chapter describes the periphery circuits for the AER asynchronous readout in our octopus
sensor, seen in Fig. 4.1, designed and fabricated in a standard 180 nm CMOS process. Most of
the concepts here were explained in Chapter 2. Section 4.1 showcase the circuits in the sender
interface. Section 4.2 provides insight into the simple encoder block. Section 4.3 gives more details
about the greedy arbiter tree, although most of the theory is contained in Section 2.2. We show
the results of post-layout verifications we conducted, as well as the resulting layout.

R
ow

 arbiter
 tree

R
ow

 interface

bu
s_

bi
t_

y<
0:

5>

bus_req_x

bus_req_y

_bus_req

_bus_ack

re
se

t_
pe

rip
h

_req_y<0:63>

ack_y<0:63>

reset_y<0:63>

vp
u_

re
q_

y

R
ow

 encoder

_ack_y<0:63>

ack_y<0:63>

_req_y<0:63>

ack_y<0:63>

_req_y<0:63>

Column
arbiter tree

Column
interface

bus_bit_x<0:6>

reset_periph

_r
eq

_x
<

0:
95

>

re
se

t_
x<

0:
95

>

vpu_req_x

Column
encoder

_a
ck

_x
<

0:
95

>

ac
k_

x<
0:

95
>

_r
eq

_x
<

0:
95

>

ac
k_

x<
0:

95
>

_r
eq

_x
<

0:
95

>

vpd_bus_req

Figure 4.1: Block diagram of the AER periphery and its signals. The wired-NORs are marked
in red. The pixel matrix sends a request in both dimensions and receives a row acknowledgment
(there is no need for column acknowledgment) and a reset in both dimensions. The pixel matrix
is omitted for brevity.

47

48 4.1 - Sender interface

4.1 Sender interface

The sender interface plays a crucial role in connecting the pixel matrix to the arbiter tree and
facilitating communication with the AER receiver. It is responsible for establishing the logic level
high by utilizing a pull-up transistor, forming the wired-NOR along with the NMOS transistor of
each pixel in the array. This signal is inverted and transmitted to the arbiter tree. Additionally,
the sender interface handles the transmission of off-chip requests to the AER receiver. This occurs
when the interface receives an acknowledge back from the arbiter tree, which is latched.

Once both dimensions have undergone arbitration and their respective requests have been sent,
the sensor outputs its row and column addresses and sends a bus request to the AER receiver.
Upon processing the bus request, the AER receiver sends a bus acknowledge signal, triggering a
reset to the pixel. Consequently, the request from that specific pixel ceases, the bus acknowledge
is latched, the off-chip request finishes, and the reset signal stops.

The circuit implementation of the sender interface, seen in Figure 4.2, employs digital logic
using minimum lengths (L = 180 nm). The widths of transistors vary depending on the required
signal strength. Inverters utilize a PMOS width of 1 µm and an NMOS width of 800 nm. The
off-chip pull-up bus request employs a 3 µm PMOS. The in-chip pull-up wired-NOR transistor has
a width of 18 µm. Other gates in the circuit utilize a PMOS width of 660 nm and an NMOS width
of 400 nm.

This interface is essential in any asynchronous readout scheme, and is one of its main limitations.
As we explained in Section 2, the wired-NORs do not allow for larger pixel resolutions, because
the grid connections result in slow transitions.

_re
q

ac
k

rese
t_perip

h

_b
us

_a
ck

bus_req

reset_pixel

arb_req

_arb_ack

reset_pixel = Q _bus_ack + reset_periph

Q

Vpull-up

Figure 4.2: Schematic of the sender. It implements the buffering of the wired-NOR signal, which
goes directly to the arbiter tree. An acknowledge arrives and is latched, triggering a chip request in
the AER bus for its corresponding dimension. The acknowledge is also inverted to activate certain
bits of the encoder. When the aknowledge from the AER sender is received, the pixel is reset.
Notice that all signals are related to their dimension, since there is a sender for rows and columns.

CHAPTER 4 - AER Periphery 49

4.2 Encoders

The encoder block uses PMOS and NMOS transistors to codify a one and a zero in each digital bit,
respectively. The number of bits depends on the rows and columns that have to be represented.

As seen in Fig. 4.3, the request signal of each array crosses the encoder without any connection.
This is because the encoder is usually physically located between the sender interface and the arbiter
tree, so the wires need to cross it. The acknowledge signals are used to switch the transistors. They
are all dimensioned with L = 180 nm and W = 3 µm.

ack
_ack

req

ack
_ack

req

ack
_ack

req

ack
_ack

req

ack
_ack

req

. . .

. . .

. . .

. . .

. . .

. . .

bus_bit[5] bus_bit[4] bus_bit[3] bus_bit[2] bus_bit[1] bus_bit[0]

Figure 4.3: Schematic of the row encoder. All transistors have minimum length and W = 3 µm.
The request line crosses the block without connections to reach the arbiter tree. The output is
an N bit signal to encode 2N addresses. There is another encoder for columns with one more bit.
Each encoder has an output bus.

50 4.3 - Arbiter tree

4.3 Arbiter tree

We already discussed the greedy arbiter in Section 2.2.1. We implemented it with PMOS widths
of 660 nm and NMOS widths of 440 nm, all with minimum dimensions.

In Fig. 4.4(a), we show the circuit implementation of the greedy arbiter. Fig. 4.4(b) represents
the three last levels in the column arbiter tree. Because the matrix has 96 columns, we need to use
a dummy connection so that all requests and acknowledge go through the same number of arbiters.

To validate the behavior of the arbiters, we performed post-layout verifications in a simple
testbench. We wanted to assess how much time the arbiter tree needed for acknowledging a
request, and whether a greedy path was formed. For that, we did a transient simulation with three
requests signals at different instants, and measure the time until it get acknowledged.

We did the simulation in the entire periphery circuits; that is, including the sender interface
and the encoders, since their effect on timing is essential. The results can be seen in Fig. 4.5. First,
a request from the first row is pulled, and an acknowledge is answered in 6.45 ns. Then, a second
request is pulled by the second row, which is not answered because the request from the first is
still active. After we reset the first request, an acknowledge comes 0.98 ns later. This difference in
time highlights the effect of the greedy path, since the signal did not have to propagate to the top
of the tree. Last, we do the same but with the last request, which yields a delay time of 6.63 ns.

Last, we show the layout result of all the blocks in the periphery for rows in Fig. 4.7. The
same components are used for columns, but with more elements.

ack req0 req1

ack0

ack1

req

RS bistable

Glitch
filter

req

ack

(a)

(b)

Figure 4.4: (a) Schematic of a single greedy arbiter. (b) Last three levels of the greedy arbiter
column tree. We need to use a dummy connection because there are 96 columns, which is not an
exponential number with base 2.

CHAPTER 4 - AER Periphery 51

Column AER processing. The wired-NORs deliver

requests, which are answered by acknowledges

0 0.2 0.4 0.6 0.8 1 1.2

Time (us)

0

0.5

1

1.5

2

V
o
lt
a
g
e
 (

V
)

_REQ_1

ACK_1

0.5 1 1.5 2

Time (us)

0

0.5

1

1.5

2

V
o
lt
a
g
e
 (

V
) ACK_1

_REQ_2

ACK_2

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

Time (us)

0

0.5

1

1.5

2

V
o
lt
a
g
e
 (

V
)

ACK_2

_REQ_92

ACK_92

Figure 4.5: Post-layout verification of the AER blocks. The column circuits (sender, encoder, and
arbitration tree) are tested with three requests coming from neighbor and extreme pixels. ACK1
comes 6.45 ns after REQ1 goes high, ACK2 comes 0.98 ns after REQ1 goes low (with REQ2 active),
and ACK3 comes 6.63 ns after REQ2 goes low (with REQ3 active).

52 4.3 - Arbiter tree

83
8.

96
 µ

m

45.55 µm 45.86 µm 93.34 µm

217.51 µm

Figure 4.6: Layout of the row periphery, with the sender (left), the encoder (middle), and the
arbiter tree (right). This block is connected directly to the pixel matrix and contains 64 senders,
64 encoders, and 63 arbiters in a 6 stages tree. The column periphery is not shown for brevity, but
the dimensions are almost identical: 96 senders, 96 encoders, and 96 arbiters in a 7 stages tree.
The sixth stage has a dummy connection.

CHAPTER 4 - AER Periphery 53

TEST BLOCKS

PIXEL MATRIXAER COLUMN
CIRCUITS

AER ROW
CIRCUITS

Figure 4.7: Layout of the chip’s top view, with the size of two mini-ASICs.

54 4.3 - Arbiter tree

CHAPTER 5

Expected Results and Future
Work

Eric Fossum defined the perfect image sensor as an imager with “infinite resolution, dynamic range,
and frame rate, together with zero pixel size and power consumption”. However, the output of this
ideal sensor would come at an exorbitant cost in terms of data processing. Event-based imagers,
inspired by biological systems, introduce an additional metric to the ideal imager: a perfectly
balanced exchange of information between the sensor output and the vision problem at hand.
These imagers employ local gain control and extensive local computational capabilities to generate
an asynchronous stream of digital data that represents only the relevant information for vision.

In this study, our focus was on designing an octopus sensor with a novel decoupling paradigm,
which has the potential to produce recognizable images using less data. The two proposed readout
modes aim to explore how the output of a spiking matrix can be efficiently processed. Prior
theoretical research has already demonstrated that a more sparse readout enhances the extraction
of relevant information from visual scenes. Our objective is to test this hypothesis in a real-world
application while also investigating whether a random sampling approach based on a Poisson
process can generate coherent and meaningful data.

Table 5.1: Comparison to Other Octopus Sensors reported in the Literature

Work This work
Culurciello
et. al. [64]

Ohta et.
al. [35]

Leñero
et. al. [34]

Leñero
et. al. [30, 38]

Year 2023 2001 2005 2014 2017
Technology 180 nm 0.6 µm 0.6 µm 90 nm 180 nm

Power supply 1.8 V
2.9 V Digital
2.7 V Analog

3 V 2.5 V
1.8 V Digital
5 V Analog

Resolution 96x64 pix 80x60 pix 16x16 pix 22x22 pix 96x128 pix
Fill factor 47.5% 14% - 28% 10%

Pixel pitch
18.63 µm x
12.38 µm 32 µm x 30 µm

240 µm x
240 µm

31 µm x
31 µm

25 µm x
25 µm

Readout
Windowed
asynchronous
AER

Asynchronous
AER

Synchronous
Asynchronous
AER

Asynchronous
AER

Application Experimental Imaging
Retinal
prosthesis

Tricolor
vision

Sun Sensor,
Hybrid APS

55

56

By incorporating these innovative technique into the architecture of the octopus sensor, we aim
to advance the understanding of event-based imaging and explore the potential benefits of sparse
readout and random sampling in capturing and processing visual information with a reduction in
data. This work contributes to the ongoing exploration of event-based imaging techniques and
their application in various vision-related tasks.

• Development of a testbench using an FPGA board to implement the window generation. For
the sparse readout mode, monitoring the AER bus and assessing the rate of off-chip requests
can determine if the system is near saturation. In such cases, the FPGA could deactivate
the window until all available events in the matrix have been read, indicating completion.

• For the quanta-acquisition mode, investigating and comparing different types of windows is
recommended. Méndez-Romero previously studied four window schemes in Matlab simula-
tions [54]. Conducting laboratory experiments to compare and evaluate the performance of
these windowing approaches would provide valuable insights.

• A thorough comparison between asynchronous and synchronous readout schemes is still lack-
ing in the literature. Expanding the content of the second chapter and submitting a review
article to a relevant journal would contribute to addressing this gap and provide researchers
with a comprehensive understanding of the strengths and weaknesses of each approach.

Bibliography

[1] N. N. House, “Niépce and the invention of photography.”

[2] E. R. Fossum, “The invention of cmos image sensors: A camera in every pocket,” in 2020 Pan
Pacific Microelectronics Symposium (Pan Pacific), pp. 1–6, 2020.

[3] I. Spectrum, “Nobel controversy: Who deserves credit for inventing the ccd?.”

[4] E. Fossum, “Cmos image sensors: electronic camera-on-a-chip,” IEEE Transactions on Elec-
tron Devices, vol. 44, no. 10, pp. 1689–1698, 1997.

[5] J. Ohta, Smart CMOS Image Sensors and Applications. Optical Science and Engineering,
CRC Press, 2020.

[6] E. R. Fossum, “Camera-on-a-chip: Technology transfer from saturn to your cell phone,”
Technology Innovation, vol. 15, no. 3, pp. 197–209, 2013.

[7] E. Fossum and R. Nixon, “Single chip camera device having double sampling operation,”
US-PATENT-6456326, Sep. 2002.

[8] E. Fossum and R. Nixon, “Single substrate camera device with cmos image sensor,” US-
Patent-7369166, Sep. 2008.

[9] C. Posch, T. Serrano-Gotarredona, B. Linares-Barranco, and T. Delbruck, “Retinomorphic
event-based vision sensors: Bioinspired cameras with spiking output,” Proceedings of the
IEEE, vol. 102, no. 10, pp. 1470–1484, 2014.

[10] G. Gallego, T. Delbruck, G. Orchard, C. Bartolozzi, B. Taba, A. Censi, S. Leutenegger, A. J.
Davison, J. Conradt, K. Daniilidis, and D. Scaramuzza, “Event-based vision: A survey,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 44, pp. 154–180, jan 2022.

[11] G. Gilder, The Silicon Eye: Microchip Swashbucklers and the Future of High-Tech Innovation.
W. W. Norton Company, 1th ed., 2006.

[12] I. Spectrum, “Moore’s law - the genius lives on.”

[13] P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128 x 128 120db 30mw asynchronous vision
sensor that responds to relative intensity change,” in 2006 IEEE International Solid State
Circuits Conference - Digest of Technical Papers, pp. 2060–2069, 2006.

[14] K. Boahen, “Point-to-point connectivity between neuromorphic chips using address events,”
IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 47,
no. 5, pp. 416–434, 2000.

[15] J. A. Leñero-Bardallo, R. Carmona-Galán, and A. Rodŕıguez-Vázquez, “Applications of event-
based image sensors—review and analysis,” International Journal of Circuit Theory and Ap-
plications, vol. 46, no. 9, pp. 1620–1630, 2018.

57

58 BIBLIOGRAPHY

[16] M. A. Mahowald, “An analog vlsi system for stereoscopic vision,” 1994.

[17] P. Lichtsteiner and T. Delbruck, “A 64x64 aer logarithmic temporal derivative silicon retina,”
in Research in Microelectronics and Electronics, 2005 PhD, vol. 2, pp. 202–205, 2005.

[18] M. Guo, S. Chen, Z. Gao, W. Yang, P. Bartkovjak, Q. Qin, X. Hu, D. Zhou, M. Uchiyama,
S. Fukuoka, C. Xu, H. Ebihara, A. Wang, P. Jiang, B. Jiang, B. Mu, H. Chen, J. Yang,
T. Dai, A. Suess, and Y. Kudo, “A 3-wafer-stacked hybrid 15mpixel cis + 1 mpixel evs with
4.6gevent/s readout, in-pixel tdc and on-chip isp and esp function,” pp. 90–92, IEEE, 2 2023.

[19] A. Niwa, F. Mochizuki, R. Berner, T. Maruyarma, T. Terano, K. Takamiya, Y. Kimura,
K. Mizoguchi, T. Miyazaki, S. Kaizu, H. Takahashi, A. Suzuki, C. Brandli, H. Wakabayashi,
and Y. Oike, “A 2.97m-pitch event-based vision sensor with shared pixel front-end circuitry
and low-noise intensity readout mode,” pp. 4–6, IEEE, 2 2023.

[20] K. Kodama, Y. Sato, Y. Yorikado, R. Berner, K. Mizoguchi, T. Miyazaki, M. Tsukamoto,
Y. Matoba, H. Shinozaki, A. Niwa, T. Yamaguchi, C. Brandli, H. Wakabayashi, and Y. Oike,
“1.22m 35.6mpixel rgb hybrid event-based vision sensor with 4.88m-pitch event pixels and up
to 10k event frame rate by adaptive control on event sparsity,” pp. 92–94, IEEE, 2 2023.

[21] T.-H. Hsu, Y.-K. Chen, J.-S. Wu, W.-C. Ting, C.-T. Wang, C.-F. Yeh, S.-H. Sie, Y.-R. Chen,
R.-S. Liu, C.-C. Lo, K.-T. Tang, Meng-Fan, Chang, and C.-C. Hsieh, “A 0.8v multimode
vision sensor for motion and saliency detection with ping-pong pwm pixel,” IEEE, 2020.

[22] T. Finateu, A. Niwa, D. Matolin, K. Tsuchimoto, A. Mascheroni, E. Reynaud, P. Mostafalu,
F. Brady, L. Chotard, F. LeGoff, H. Takahashi, H. Wakabayashi, Y. Oike, and C. Posch,
“A 1280×720 back-illuminated stacked temporal contrast event-based vision sensor with
4.86µm pixels, 1.066geps readout, programmable event-rate controller and compressive data-
formatting pipeline,” pp. 112–114, 2020.

[23] O. Kumagai, A. Niwa, K. Hanzawa, H. Kato, S. Futami, T. Ohyama, T. Imoto, M. Nakamizo,
H. Murakami, T. Nishino, A. Bostamam, T. Iinuma, N. Kuzuya, K. Hatsukawa, F. Brady,
W. Bidermann, T. Wakano, T. Nagano, H. Wakabayashi, and Y. Nitta, “A 1/4-inch 3.9mpixel
low-power event-driven back-illuminated stacked cmos image sensor,” vol. 61, pp. 86–88, In-
stitute of Electrical and Electronics Engineers Inc., 3 2018.

[24] B. Son, Y. Suh, S. Kim, H. Jung, J. S. Kim, C. Shin, K. Park, K. Lee, J. Park, J. Woo,
Y. Roh, H. Lee, Y. Wang, I. Ovsiannikov, and H. Ryu, “A 640×480 dynamic vision sensor
with a 9µm pixel and 300meps address-event representation,” vol. 60, pp. 66–67, Institute of
Electrical and Electronics Engineers Inc., 3 2017.

[25] C. Brandli, R. Berner, M. Yang, S.-C. Liu, and T. Delbruck, “A 240 × 180 130 db 3 µs latency
global shutter spatiotemporal vision sensor,” IEEE Journal of Solid-State Circuits, vol. 49,
no. 10, pp. 2333–2341, 2014.

[26] Y. Suh, S. Choi, M. Ito, J. Kim, Y. Lee, J. Seo, H. Jung, D.-H. Yeo, S. Namgung, J. Bong,
S. Yoo, S.-H. Shin, D. Kwon, P. Kang, S. Kim, H. Na, K. Hwang, C. Shin, J.-S. Kim, P. K. J.
Park, J. Kim, H. Ryu, and Y. Park, “A 1280×960 dynamic vision sensor with a 4.95-m pixel
pitch and motion artifact minimization,” pp. 1–5, 2020.

[27] D. G. Chen, D. Matolin, A. Bermak, and C. Posch, “Pulse-modulation imaging - review
and performance analysis,” IEEE Transactions on Biomedical Circuits and Systems, vol. 5,
pp. 64–82, 2 2011.

[28] C. Posch, D. Matolin, and R. Wohlgenannt, “A qvga 143 db dynamic range frame-free pwm im-
age sensor with lossless pixel-level video compression and time-domain cds,” vol. 46, pp. 259–
275, 1 2011.

BIBLIOGRAPHY 59

[29] E. Culurciello, R. Etienne-Cummings, and K. A. Boahen, “A biomorphic digital image sensor,”
IEEE Journal of Solid-State Circuits, vol. 38, pp. 281–294, 2 2003.

[30] J. A. Leñero-Bardallo, L. Farian, J. M. Guerrero-Rodriguez, R. Carmona-Galan, and
Rodŕıguez-Vázquez, “Sun sensor based on a luminance spiking pixel array,” IEEE Sensors
Journal, vol. 17, no. 20, pp. 6578–6578, 15 Oct.15, 2017.

[31] Lukasz Farian, P. Häfliger, and J. A. Leñero-Bardallo, “A miniaturized two-axis ultra low
latency and low-power sun sensor for attitude determination of micro space probes,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 65, pp. 1543–1554, 5 2018.

[32] R. Gomez-Merchan, J. A. Lenero-Bardallo, M. Lopez-Carmona, and A. Rodriguez-Vazquez,
“A low-latency, low-power cmos sun sensor for attitude calculation using photo-voltaic regime
and on-chip centroid computation,” IEEE Transactions on Instrumentation and Measurement,
2023.

[33] J. A. Lenero-Bardallo, J. M. Guerrero-Rodriguez, R. Carmona-Galan, and A. Rodriguez-
Vazquez, “On the analysis and detection of flames with an asynchronous spiking image sensor,”
IEEE Sensors Journal, vol. 18, pp. 6588–6595, 8 2018.

[34] J. A. Leñero-Bardallo, D. H. Bryn, and P. Häfliger, “Bio-inspired asynchronous pixel event tri-
color vision sensor,” IEEE Transactions on Biomedical Circuits and Systems, vol. 8, pp. 345–
357, 2014.

[35] J. Ohta, K. Kagawa, T. Tokuda, and M. Nunoshita, “Retinal prosthesis device based on
pulse-frequency-modulation vision chip,” 2005.

[36] C. Shoushun, F. Boussaid, and A. Bermak, “Robust intermediate read-out for deep submicron
technology cmos image sensors,” vol. 8, pp. 286–294, 3 2008.

[37] J. A. Leñero-Bardallo, P. Häfliger, R. Carmona-Galán, and Ángel Rodŕıguez-Vázquez, “A
bio-inspired vision sensor with dual operation and readout modes,” IEEE Sensors Journal,
vol. 16, pp. 317–330, 1 2016.

[38] J. A. Leñero-Bardallo, R. Carmona-Galán, and Ángel Rodŕıguez-Vázquez, “A wide linear dy-
namic range image sensor based on asynchronous self-reset and tagging of saturation events,”
IEEE Journal of Solid-State Circuits, vol. 52, pp. 1605–1617, 6 2017.

[39] J. A. Lenero-Bardallo, M. Delgado-Restituto, R. Carmona-Galan, and A. Rodriguez-Vazquez,
“Asynchronous spiking pixel with programmable sensitivity to illumination,” IEEE Transac-
tions on Circuits and Systems I: Regular Papers, vol. 65, pp. 3854–3863, 11 2018.

[40] J. Xu, Z. Yang, Z. Gao, W. Zheng, and J. Ma, “A method of biomimetic visual perception
and image reconstruction based on pulse sequence of events,” IEEE Sensors Journal, vol. 19,
pp. 1008–1018, 2 2019.

[41] S. Liu, T. Delbruck, G. Indiveri, A. Whatley, and R. Douglas, Event-Based Neuromorphic
Systems. Wiley, 2014.

[42] N. Imam and R. Manohar, “Address-event communication using token-ring mutual exclusion,”
pp. 99–108, 2011.

[43] K. Boahen, “A burst-mode word-serial address-event link-i: transmitter design,” IEEE Trans-
actions on Circuits and Systems I: Regular Papers, vol. 51, no. 7, pp. 1269–1280, 2004.

60 BIBLIOGRAPHY

[44] B. Son, Y. Suh, S. Kim, H. Jung, J.-S. Kim, C. Shin, K. Park, K. Lee, J. Park, J. Woo,
Y. Roh, H. Lee, Y. Wang, I. Ovsiannikov, and H. Ryu, “4.1 a 640×480 dynamic vision sensor
with a 9µm pixel and 300meps address-event representation,” in 2017 IEEE International
Solid-State Circuits Conference (ISSCC), pp. 66–67, 2017.

[45] C. Li, L. Longinotti, F. Corradi, and T. Delbruck, “A 132 by 104 10m-pixel 250w 1kefps
dynamic vision sensor with pixel-parallel noise and spatial redundancy suppression,” 2019.

[46] R. Gomez-Merchan, R. de la Rosa-Vidal, J. A. Leñero-Bardallo, and Rodŕıguez-Vázquez,
“Load reduction and adaptive pull-up strategies fortime delay reduction in high-resolution aer
sensors,” in 2023 IEEE International Symposium on Circuits and Systems (ISCAS), (Mon-
terey, California, USA), pp. 6578–6578, 2023.

[47] S. Fok and K. Boahen, “A serial h-tree router for two-dimensional arrays,” vol. 2018-May,
pp. 78–85, IEEE Computer Society, 12 2018.

[48] J. Sparsø and S. Furber, Principles of Asynchronous Circuit Design: A Systems Perspective.
Springer US, 2013.

[49] P. D. Häfliger, A spike based learning rule and its implementation in analog hardware. Doctoral
thesis, ETH Zurich, Zürich, 2000. Diss. Naturwissenschaften ETH Zürich, Nr. 13581, 2000.

[50] G. A. Subbarao and P. D. H. afliger, “Design and comparison of synthesizable fair asyn-
chronous arbiter,” 2020.

[51] H. E. Ryu and S. Lsi, “Industrial dvs design; key features and applications.”

[52] D. Gehrig and D. Scaramuzza, “Are high-resolution event cameras really needed?,” 2022.

[53] K. Adam, “Timing is everything,” p. 164, 2022.

[54] R. J. Méndez Romero, “Estudio de la técnica de adquisición de datos quanta imaging en
sensores de imagen aśıncronos.,” 2021.

[55] R. J. Méndez-Romero, J. A. Leñero-Bardallo, , and A. Rodŕıguez-Vázquez, “On the applica-
tion of quanta imaging acquisition to spiking luminance sensors,” 2022.

[56] E. R. Fossum, J. Ma, S. Masoodian, L. Anzagira, and R. Zizza, “The quanta image sensor:
Every photon counts,” 8 2016.

[57] J. A. Leñero-Bardallo, F. Pérez-Peña, R. Carmona-Galán, and Rodŕıguez-Vázquez, “Pipeline
aer arbitration with event aging,” IEEE International Symposium on Circuits and Systems
(ISCAS), pp. 1–4, 2017.

[58] P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design. NewYork Oxford, 3rd ed., 2012.

[59] R. Domı́nguez-Castro, M. Delgado-Restituto, A. Rodŕıguez-Vázquez, J. M. de la Rosa, and
F. Medeiro, “Cmos comparators,” in CMOS Telecom Data Converters (A. Rodŕıguez-Vázquez,
F. Medeiro, and E. Janssens, eds.), pp. 149–182, Boston, MA: Springer US, 2003.

[60] B. Razavi, Design of Analog CMOS Integrated Circuits. McGraw Hill India, 2th ed., 2017.

[61] D. M. Binkley, Tradeoffs and Optimization in Analog CMOS Design. John Wiley Sons,
1st ed., 2008.

[62] J. M. Rabaey, Digital integrated circuits: a design perspective. Prentice Hall, 2nd ed., 2003.

[63] T. C. Carusone, D. Johns, and K. Martin, Digital integrated circuits : a design perspective.
Wiley, 2nd ed., 2011.

BIBLIOGRAPHY 61

[64] E. Culurciello, R. Etienne-Cummings, and K. Boahen, “Arbitrated address event representa-
tion digital image sensor,” p. 495, IEEE, 2001.

